A Novel Truncated Capped Norm Regularization Method for Hyperspectral Image Denoising

Xuegang Luo;Junrui Lv
{"title":"A Novel Truncated Capped Norm Regularization Method for Hyperspectral Image Denoising","authors":"Xuegang Luo;Junrui Lv","doi":"10.1109/LGRS.2025.3562203","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) denoising is a critical yet challenging task. While low-rank (LR) tensor decomposition methods, such as tensor ring decomposition (TRD), have shown promise in capturing the intrinsic correlations of HSIs, existing TRD-based approaches often rely on simplistic nuclear norm regularizations, leading to suboptimal noise removal or over-smoothing of details. To address these limitations, this letter proposes a novel hybrid capped truncated nuclear norm-regularized TRD (HTCN-TRD) framework for HSI denoising. Specifically, the HTCN-TRD model introduces a hybrid regularization into the TRD framework to flexibly balance low-rankness and sparsity while preserving structural integrity. An efficient optimization algorithm is developed under the alternating direction method of multipliers (ADMMs) framework, with theoretical convergence guarantees. Extensive experiments on synthetic and real-world datasets demonstrate that HTCN-TRD outperforms state-of-the-art methods in both quantitative metrics and visual quality.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10969811/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral image (HSI) denoising is a critical yet challenging task. While low-rank (LR) tensor decomposition methods, such as tensor ring decomposition (TRD), have shown promise in capturing the intrinsic correlations of HSIs, existing TRD-based approaches often rely on simplistic nuclear norm regularizations, leading to suboptimal noise removal or over-smoothing of details. To address these limitations, this letter proposes a novel hybrid capped truncated nuclear norm-regularized TRD (HTCN-TRD) framework for HSI denoising. Specifically, the HTCN-TRD model introduces a hybrid regularization into the TRD framework to flexibly balance low-rankness and sparsity while preserving structural integrity. An efficient optimization algorithm is developed under the alternating direction method of multipliers (ADMMs) framework, with theoretical convergence guarantees. Extensive experiments on synthetic and real-world datasets demonstrate that HTCN-TRD outperforms state-of-the-art methods in both quantitative metrics and visual quality.
一种新的截断帽范数正则化方法用于高光谱图像去噪
高光谱图像去噪是一项关键而又具有挑战性的任务。虽然低秩(LR)张量分解方法,如张量环分解(TRD),在捕获hsi的内在相关性方面表现出了希望,但现有的基于TRD的方法通常依赖于简单的核范数正则化,导致次优的噪声去除或细节的过度平滑。为了解决这些限制,本文提出了一种用于HSI去噪的新型混合封顶截断核规范-正则化TRD (HTCN-TRD)框架。具体来说,HTCN-TRD模型在TRD框架中引入了混合正则化,在保持结构完整性的同时灵活地平衡了低秩和稀疏性。在乘法器交替方向法(admm)框架下,提出了一种具有理论收敛性的高效优化算法。在合成数据集和真实世界数据集上进行的大量实验表明,HTCN-TRD在定量指标和视觉质量方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信