Dropout Concrete Autoencoder for Band Selection on Hyperspectral Image Scenes

Lei Xu;Mete Ahishali;Moncef Gabbouj
{"title":"Dropout Concrete Autoencoder for Band Selection on Hyperspectral Image Scenes","authors":"Lei Xu;Mete Ahishali;Moncef Gabbouj","doi":"10.1109/LGRS.2025.3564478","DOIUrl":null,"url":null,"abstract":"Deep learning-based informative band selection methods on hyperspectral images (HSIs) have recently gained intense attention to eliminate spectral correlation and redundancies. However, existing deep learning-based methods either need additional postprocessing strategies to select the descriptive bands or optimize the model indirectly due to the parameterization inability of discrete variables for the selection procedure. To overcome these limitations, this work proposes a novel end-to-end network for informative band selection. The proposed network, named Dropout concrete autoencoder (CAE), is inspired by advances in the CAE and Dropout feature ranking (Dropout FR) strategy. Unlike traditional deep learning-based methods; the Dropout CAE is trained directly given the required band subset, eliminating the need for further postprocessing. The experimental results in four HSI scenes show that the Dropout CAE achieves substantial and effective performance levels that outperform competing methods. The code is available at <uri>https://github.com/LeiXuAI/Hyperspectral</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976710","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10976710/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based informative band selection methods on hyperspectral images (HSIs) have recently gained intense attention to eliminate spectral correlation and redundancies. However, existing deep learning-based methods either need additional postprocessing strategies to select the descriptive bands or optimize the model indirectly due to the parameterization inability of discrete variables for the selection procedure. To overcome these limitations, this work proposes a novel end-to-end network for informative band selection. The proposed network, named Dropout concrete autoencoder (CAE), is inspired by advances in the CAE and Dropout feature ranking (Dropout FR) strategy. Unlike traditional deep learning-based methods; the Dropout CAE is trained directly given the required band subset, eliminating the need for further postprocessing. The experimental results in four HSI scenes show that the Dropout CAE achieves substantial and effective performance levels that outperform competing methods. The code is available at https://github.com/LeiXuAI/Hyperspectral
用于高光谱图像场景波段选择的Dropout混凝土自编码器
近年来,基于深度学习的高光谱图像信息波段选择方法在消除光谱相关性和冗余方面受到了广泛关注。然而,现有的基于深度学习的方法要么需要额外的后处理策略来选择描述波段,要么由于离散变量无法在选择过程中参数化而间接优化模型。为了克服这些限制,本工作提出了一种新的端到端网络,用于信息波段选择。该网络被命名为Dropout具体自动编码器(CAE),其灵感来自于CAE和Dropout特征排序(Dropout FR)策略的进展。与传统的基于深度学习的方法不同;Dropout CAE直接给定所需的频带子集进行训练,从而消除了进一步后处理的需要。在四个HSI场景下的实验结果表明,Dropout CAE达到了实质性和有效的性能水平,优于竞争对手的方法。代码可在https://github.com/LeiXuAI/Hyperspectral上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信