IRSTD-YOLO: An Improved YOLO Framework for Infrared Small Target Detection

Yuan Tang;Tingfa Xu;Haolin Qin;Jianan Li
{"title":"IRSTD-YOLO: An Improved YOLO Framework for Infrared Small Target Detection","authors":"Yuan Tang;Tingfa Xu;Haolin Qin;Jianan Li","doi":"10.1109/LGRS.2025.3562096","DOIUrl":null,"url":null,"abstract":"Detecting small targets in infrared images, especially in low-contrast and complex backgrounds, remains challenging. To tackle this, we propose infrared small target detection YOLO (IRSTD-YOLO), a novel detection network. The edge and feature extraction (EFE) module enhances feature representation by integrating a SobelConv branch and a 2DConv branch. The SobelConv branch applies Sobel operators to extract gradient information, enhancing edge contrast and making small targets more distinguishable from the background. Unlike standard convolutions, which process all features uniformly, this edge-aware operation emphasizes structural information crucial for detecting small infrared targets. The 2DConv branch captures spatial context, complementing the edge features to create a more comprehensive representation. To further refine detection, we introduce the infrared small target enhancement (IRSTE) module, addressing the limitations of conventional feature pyramid networks. Instead of merely adding a shallow detection head, IRSTE processes and enhances shallow-layer features, which are rich in small target information, and fuses them with deeper features. By leveraging a multibranch strategy that integrates local, global, and large-scale contexts, IRSTE enhances small target representation and detection robustness, particularly in low-contrast environments where traditional networks often fail. Experimental results show that IRSTD-YOLO achieves an mAP@0.5:0.95 of 36.7% on the InfraredUAV dataset and 51.6% on the AntiUAV310 dataset, outperforming YOLOv11-s by 4.4% and 4.2%, respectively. Code is released at <uri>https://github.com/vectorbullet/IRSTD-YOLO</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10967392/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting small targets in infrared images, especially in low-contrast and complex backgrounds, remains challenging. To tackle this, we propose infrared small target detection YOLO (IRSTD-YOLO), a novel detection network. The edge and feature extraction (EFE) module enhances feature representation by integrating a SobelConv branch and a 2DConv branch. The SobelConv branch applies Sobel operators to extract gradient information, enhancing edge contrast and making small targets more distinguishable from the background. Unlike standard convolutions, which process all features uniformly, this edge-aware operation emphasizes structural information crucial for detecting small infrared targets. The 2DConv branch captures spatial context, complementing the edge features to create a more comprehensive representation. To further refine detection, we introduce the infrared small target enhancement (IRSTE) module, addressing the limitations of conventional feature pyramid networks. Instead of merely adding a shallow detection head, IRSTE processes and enhances shallow-layer features, which are rich in small target information, and fuses them with deeper features. By leveraging a multibranch strategy that integrates local, global, and large-scale contexts, IRSTE enhances small target representation and detection robustness, particularly in low-contrast environments where traditional networks often fail. Experimental results show that IRSTD-YOLO achieves an mAP@0.5:0.95 of 36.7% on the InfraredUAV dataset and 51.6% on the AntiUAV310 dataset, outperforming YOLOv11-s by 4.4% and 4.2%, respectively. Code is released at https://github.com/vectorbullet/IRSTD-YOLO
IRSTD-YOLO:红外小目标检测的改进YOLO框架
红外图像中的小目标检测,特别是在低对比度和复杂背景下的小目标检测仍然具有挑战性。为了解决这一问题,我们提出了一种新的红外小目标检测YOLO (IRSTD-YOLO)网络。边缘和特征提取(EFE)模块通过集成SobelConv分支和2DConv分支来增强特征表示。SobelConv分支利用Sobel算子提取梯度信息,增强边缘对比度,使小目标更容易与背景区分。与统一处理所有特征的标准卷积不同,这种边缘感知操作强调检测小红外目标的关键结构信息。2DConv分支捕捉空间背景,补充边缘特征,创造更全面的表现。为了进一步改进检测,我们引入了红外小目标增强(IRSTE)模块,解决了传统特征金字塔网络的局限性。IRSTE不是简单地增加一个浅层检测头,而是对含有丰富小目标信息的浅层特征进行处理和增强,并将其与深层特征融合。通过利用集成本地、全局和大规模上下文的多分支策略,IRSTE增强了小目标表示和检测的鲁棒性,特别是在传统网络经常失败的低对比度环境中。实验结果表明,IRSTD-YOLO在红外duav数据集和AntiUAV310数据集上的准确率分别为mAP@0.5:0.95(36.7%)和51.6%,分别比YOLOv11-s高4.4%和4.2%。代码发布在https://github.com/vectorbullet/IRSTD-YOLO
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信