Dynamic Spectral Similarity Method (DSSM)—A Novel Method for Automated Identification of Objects in Hyperspectral Imagery

Harsha Chandra;Rama Rao Nidamanuri
{"title":"Dynamic Spectral Similarity Method (DSSM)—A Novel Method for Automated Identification of Objects in Hyperspectral Imagery","authors":"Harsha Chandra;Rama Rao Nidamanuri","doi":"10.1109/LGRS.2025.3564386","DOIUrl":null,"url":null,"abstract":"Automatic identification of object of interest in a hyperspectral imagery is promising for remote sensing applications. Spectral knowledge transfer enables autonomous comparison of reference and imagery spectra for expert-independent analysis. Knowledge-transfer-based analysis involves comparing image spectra to the reference spectra (spectral libraries) using spectral similarity metrics. However, the reference spectral databases and the imagery acquired by different sensors differ in spectral resolution and bandwidths, limiting the direct comparison of the spectra. Thus, prerequisite process of spectral resampling is required before the analysis. We propose a new method “dynamic spectral similarity method (DSSM)” that quantitatively compares spectra from sensors having different spectral resolutions. DSSM geometrically aligns two nonlinear spectra and computes an optimal alignment cost through a time-warping process in a dynamic feature space. We demonstrated the potential of DSSM by comparing spectra of diverse landscape elements obtained from various sources (satellites, airborne, spectral libraries) against reference databases. Furthermore, the proposed method is compared with spectral matching methods [spectral angle mapper (SAM), spectral information divergence2 (SID), normalized spectral similarity score (NS3)] after a spectral alignment process using a Gaussian diffusion model. The results are promising, offering 80%–90% matching accuracy in all the scenarios. DSSM enables seamless comparison of images with varying spectral characteristics, allowing selective and automatic object identification.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10976675/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic identification of object of interest in a hyperspectral imagery is promising for remote sensing applications. Spectral knowledge transfer enables autonomous comparison of reference and imagery spectra for expert-independent analysis. Knowledge-transfer-based analysis involves comparing image spectra to the reference spectra (spectral libraries) using spectral similarity metrics. However, the reference spectral databases and the imagery acquired by different sensors differ in spectral resolution and bandwidths, limiting the direct comparison of the spectra. Thus, prerequisite process of spectral resampling is required before the analysis. We propose a new method “dynamic spectral similarity method (DSSM)” that quantitatively compares spectra from sensors having different spectral resolutions. DSSM geometrically aligns two nonlinear spectra and computes an optimal alignment cost through a time-warping process in a dynamic feature space. We demonstrated the potential of DSSM by comparing spectra of diverse landscape elements obtained from various sources (satellites, airborne, spectral libraries) against reference databases. Furthermore, the proposed method is compared with spectral matching methods [spectral angle mapper (SAM), spectral information divergence2 (SID), normalized spectral similarity score (NS3)] after a spectral alignment process using a Gaussian diffusion model. The results are promising, offering 80%–90% matching accuracy in all the scenarios. DSSM enables seamless comparison of images with varying spectral characteristics, allowing selective and automatic object identification.
动态光谱相似度法(DSSM)——一种新的高光谱图像目标自动识别方法
高光谱图像中感兴趣目标的自动识别在遥感应用中具有广阔的应用前景。光谱知识转移使参考光谱和图像光谱的自主比较专家独立的分析。基于知识转移的分析包括使用光谱相似度度量将图像光谱与参考光谱(光谱库)进行比较。然而,参考光谱数据库和不同传感器获取的图像在光谱分辨率和带宽上存在差异,限制了光谱的直接比较。因此,在分析之前,需要进行频谱重采样的先决条件。我们提出了一种新的方法“动态光谱相似法(DSSM)”,定量比较不同光谱分辨率传感器的光谱。DSSM对两个非线性光谱进行几何对齐,并在动态特征空间中通过时间翘曲过程计算出最优的对齐代价。我们通过比较从不同来源(卫星、航空、光谱库)获得的不同景观要素的光谱与参考数据库,展示了DSSM的潜力。此外,采用高斯扩散模型,将该方法与光谱匹配方法[光谱角映射器(SAM)、光谱信息发散度2 (SID)、归一化光谱相似度评分(NS3)]进行比对。结果是有希望的,在所有场景中提供80%-90%的匹配精度。DSSM能够无缝比较具有不同光谱特征的图像,允许选择性和自动对象识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信