{"title":"SAIG: Semantic-Aware ISAR Generation via Component-Level Semantic Segmentation","authors":"Yuxin Zhao;Huaizhang Liao;Derong Kong;Zhixiong Yang;Jingyuan Xia","doi":"10.1109/LGRS.2025.3563712","DOIUrl":null,"url":null,"abstract":"This letter addresses the challenge of generating high-fidelity inverse synthetic aperture radar (ISAR) images from optical images, particularly for space targets. We propose a framework for the generation of ISAR images incorporating component refinement, which attains high-fidelity ISAR scattering characteristics through the integration of an advanced generation model predicated on semantic segmentation, designated as semantic-aware ISAR generation (SAIG). SAIG renders ISAR images from optical equivalents by learning mutual semantic segmentation maps. Extensive simulations demonstrate its effectiveness and robustness, outperforming state-of-the-art (SOTA) methods by over 8% across key evaluation metrics.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10975048/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This letter addresses the challenge of generating high-fidelity inverse synthetic aperture radar (ISAR) images from optical images, particularly for space targets. We propose a framework for the generation of ISAR images incorporating component refinement, which attains high-fidelity ISAR scattering characteristics through the integration of an advanced generation model predicated on semantic segmentation, designated as semantic-aware ISAR generation (SAIG). SAIG renders ISAR images from optical equivalents by learning mutual semantic segmentation maps. Extensive simulations demonstrate its effectiveness and robustness, outperforming state-of-the-art (SOTA) methods by over 8% across key evaluation metrics.