{"title":"Data-Driven Two-Stage Robust Optimization Allocation and Loading for Salt Lake Chemical Enterprise Products Under Demand Uncertainty","authors":"Yiyin Tang;Yalin Wang;Chenliang Liu;Qingkai Sui;Yishun Liu;Keke Huang;Weihua Gui","doi":"10.1109/JAS.2025.125204","DOIUrl":null,"url":null,"abstract":"Most enterprises rely on railway transportation to deliver their products to customers, particularly in the salt lake chemical industry. Notably, allocating products to freight spaces and their assembly on transport vehicles are critical pre-transportation processes. However, due to demand fluctuations from changing product orders and unforeseen railway scheduling delays, manually adjusted allocation and loading may lead to excessive loading and unloading distances and times, ultimately increasing transportation costs for enterprises. To address these issues, this paper proposes a data-driven two-stage robust optimization (TSRO) framework embedding with the gated stacked temporal autoencoder clustering based on the attention mechanism (GSTAC-AM), which aims to overcome demand uncertainty and enhance the efficiency of freight allocation and loading. Specifically, GSTAC-AM is developed to help predict the deviation level of demand uncertainty and mitigate the impact of potential outliers. Then, a robust counterpart model is formulated to ensure computational tractability. In addition, a multi-stage hybrid heuristic algorithm is designed to handle the large scale and complexity inherent in the freight space allocation and loading processes. Finally, the effectiveness and applicability of the proposed framework are validated through a real case study conducted in a large salt lake chemical enterprise.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 5","pages":"989-1003"},"PeriodicalIF":15.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11005756/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Most enterprises rely on railway transportation to deliver their products to customers, particularly in the salt lake chemical industry. Notably, allocating products to freight spaces and their assembly on transport vehicles are critical pre-transportation processes. However, due to demand fluctuations from changing product orders and unforeseen railway scheduling delays, manually adjusted allocation and loading may lead to excessive loading and unloading distances and times, ultimately increasing transportation costs for enterprises. To address these issues, this paper proposes a data-driven two-stage robust optimization (TSRO) framework embedding with the gated stacked temporal autoencoder clustering based on the attention mechanism (GSTAC-AM), which aims to overcome demand uncertainty and enhance the efficiency of freight allocation and loading. Specifically, GSTAC-AM is developed to help predict the deviation level of demand uncertainty and mitigate the impact of potential outliers. Then, a robust counterpart model is formulated to ensure computational tractability. In addition, a multi-stage hybrid heuristic algorithm is designed to handle the large scale and complexity inherent in the freight space allocation and loading processes. Finally, the effectiveness and applicability of the proposed framework are validated through a real case study conducted in a large salt lake chemical enterprise.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.