{"title":"Release Power of Mechanism and Data Fusion: A Hierarchical Strategy for Enhanced MIQ-Related Modeling and Fault Detection in BFIP","authors":"Siwei Lou;Chunjie Yang;Zhe Liu;Shaoqi Wang;Hanwen Zhang;Ping Wu","doi":"10.1109/JAS.2024.124821","DOIUrl":null,"url":null,"abstract":"Data-driven techniques are reshaping blast furnace iron-making process (BFIP) modeling, but their “black-box” nature often obscures interpretability and accuracy. To overcome these limitations, our mechanism and data co-driven strategy (MDCDS) enhances model transparency and molten iron quality (MIQ) prediction. By zoning the furnace and applying mechanism-based features for material and thermal trends, coupled with a novel stationary broad feature learning system (StaBFLS), interference caused by nonstationary process characteristics are mitigated and the intrinsic information embedded in BFIP is mined. Subsequently, by integrating stationary feature representation with mechanism features, our temporal matching broad learning system (TMBLS) aligns process and quality variables using MIQ as the target. This integration allows us to establish process monitoring statistics using both mechanism and data-driven features, as well as detect modeling deviations. Validated against real-world BFIP data, our MDCDS model demonstrates consistent process alignment, robust feature extraction, and improved MIQ modeling—Yielding better fault detection. Additionally, we offer detailed insights into the validation process, including parameter baselining and optimization. Details of the code are available online.<sup>1</sup><sup>1</sup>https://github.com/SiweiLou/demo_BFIP","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 5","pages":"894-912"},"PeriodicalIF":15.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11005736/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven techniques are reshaping blast furnace iron-making process (BFIP) modeling, but their “black-box” nature often obscures interpretability and accuracy. To overcome these limitations, our mechanism and data co-driven strategy (MDCDS) enhances model transparency and molten iron quality (MIQ) prediction. By zoning the furnace and applying mechanism-based features for material and thermal trends, coupled with a novel stationary broad feature learning system (StaBFLS), interference caused by nonstationary process characteristics are mitigated and the intrinsic information embedded in BFIP is mined. Subsequently, by integrating stationary feature representation with mechanism features, our temporal matching broad learning system (TMBLS) aligns process and quality variables using MIQ as the target. This integration allows us to establish process monitoring statistics using both mechanism and data-driven features, as well as detect modeling deviations. Validated against real-world BFIP data, our MDCDS model demonstrates consistent process alignment, robust feature extraction, and improved MIQ modeling—Yielding better fault detection. Additionally, we offer detailed insights into the validation process, including parameter baselining and optimization. Details of the code are available online.11https://github.com/SiweiLou/demo_BFIP
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.