{"title":"A Survey of Distributed Algorithms for Aggregative Games","authors":"Huaqing Li;Jun Li;Liang Ran;Lifeng Zheng;Tingwen Huang","doi":"10.1109/JAS.2024.124998","DOIUrl":null,"url":null,"abstract":"Game theory-based models and design tools have gained substantial prominence for controlling and optimizing behavior within distributed engineering systems due to the inherent distribution of decisions among individuals. In non-cooperative settings, aggregative games serve as a mathematical framework model for the interdependent optimal decision-making problem among a group of non-cooperative players. In such scenarios, each player's decision is influenced by an aggregation of all players' decisions. Nash equilibrium (NE) seeking in aggregative games has emerged as a vibrant topic driven by applications that harness the aggregation property. This paper presents a comprehensive overview of the current research on aggregative games with a focus on communication topology. A systematic classification is conducted on distributed algorithm research based on communication topologies such as undirected networks, directed networks, and time-varying networks. Furthermore, it sorts out the challenges and compares the algorithms' convergence performance. It also delves into real-world applications of distributed optimization techniques grounded in aggregative games. Finally, it proposes several challenges that can guide future research directions.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 5","pages":"859-871"},"PeriodicalIF":15.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10965925/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Game theory-based models and design tools have gained substantial prominence for controlling and optimizing behavior within distributed engineering systems due to the inherent distribution of decisions among individuals. In non-cooperative settings, aggregative games serve as a mathematical framework model for the interdependent optimal decision-making problem among a group of non-cooperative players. In such scenarios, each player's decision is influenced by an aggregation of all players' decisions. Nash equilibrium (NE) seeking in aggregative games has emerged as a vibrant topic driven by applications that harness the aggregation property. This paper presents a comprehensive overview of the current research on aggregative games with a focus on communication topology. A systematic classification is conducted on distributed algorithm research based on communication topologies such as undirected networks, directed networks, and time-varying networks. Furthermore, it sorts out the challenges and compares the algorithms' convergence performance. It also delves into real-world applications of distributed optimization techniques grounded in aggregative games. Finally, it proposes several challenges that can guide future research directions.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.