Efficient Attention Transformer Network With Self-Similarity Feature Enhancement for Hyperspectral Image Classification

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuyang Wang;Zhenqiu Shu;Zhengtao Yu
{"title":"Efficient Attention Transformer Network With Self-Similarity Feature Enhancement for Hyperspectral Image Classification","authors":"Yuyang Wang;Zhenqiu Shu;Zhengtao Yu","doi":"10.1109/JSTARS.2025.3560384","DOIUrl":null,"url":null,"abstract":"Recently, transformer has gained widespread application in hyperspectral image classification (HSIC) tasks due to its powerful global modeling ability. However, the inherent high-dimensional property of hyperspectral images (HSIs) leads to a sharp increase in the number of parameters and expensive computational costs. Moreover, self-attention operations in transformer-based HSIC methods may introduce irrelevant spectral–spatial information, and thus may consequently impact the classification performance. To mitigate these issues, in this article, we introduce an efficient deep network, named efficient attention transformer network (EATN), for practice HSIC tasks. Specifically, we propose two self-similarity descriptors based on the original HSI patch to enhance spatial feature representations. The center self-similarity descriptor emphasizes pixels similar to the central pixel. In contrast, the neighborhood self-similarity descriptor explores the similarity relationship between each pixel and its neighboring pixels within the patch. Then, we embed these two self-similarity descriptors into the original patch for subsequent feature extraction and classification. Furthermore, we design two efficient feature extraction modules based on the preprocessed patches, called spectral interactive transformer module and spatial conv-attention module, to reduce the computational costs of the classification framework. Extensive experiments on four benchmark datasets show that our proposed EATN method outperforms other state-of-the-art HSI classification approaches.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"11469-11486"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10964176","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10964176/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, transformer has gained widespread application in hyperspectral image classification (HSIC) tasks due to its powerful global modeling ability. However, the inherent high-dimensional property of hyperspectral images (HSIs) leads to a sharp increase in the number of parameters and expensive computational costs. Moreover, self-attention operations in transformer-based HSIC methods may introduce irrelevant spectral–spatial information, and thus may consequently impact the classification performance. To mitigate these issues, in this article, we introduce an efficient deep network, named efficient attention transformer network (EATN), for practice HSIC tasks. Specifically, we propose two self-similarity descriptors based on the original HSI patch to enhance spatial feature representations. The center self-similarity descriptor emphasizes pixels similar to the central pixel. In contrast, the neighborhood self-similarity descriptor explores the similarity relationship between each pixel and its neighboring pixels within the patch. Then, we embed these two self-similarity descriptors into the original patch for subsequent feature extraction and classification. Furthermore, we design two efficient feature extraction modules based on the preprocessed patches, called spectral interactive transformer module and spatial conv-attention module, to reduce the computational costs of the classification framework. Extensive experiments on four benchmark datasets show that our proposed EATN method outperforms other state-of-the-art HSI classification approaches.
基于自相似特征增强的高效注意力转换网络用于高光谱图像分类
近年来,变压器因其强大的全局建模能力在高光谱图像分类(HSIC)任务中得到了广泛应用。然而,高光谱图像固有的高维特性导致了参数数量的急剧增加和昂贵的计算成本。此外,基于变压器的HSIC方法中的自关注操作可能引入不相关的频谱空间信息,从而可能影响分类性能。为了缓解这些问题,在本文中,我们引入了一个高效的深度网络,称为高效注意力转换网络(EATN),用于实践HSIC任务。具体而言,我们提出了两个基于原始HSI补丁的自相似描述符来增强空间特征表征。中心自相似描述符强调与中心像素相似的像素。相比之下,邻域自相似描述符探索patch内每个像素与其相邻像素之间的相似关系。然后,我们将这两个自相似描述符嵌入到原始补丁中,用于后续的特征提取和分类。在此基础上,设计了光谱交互变压器模块和空间逆注意模块,以降低分类框架的计算成本。在四个基准数据集上的广泛实验表明,我们提出的eattn方法优于其他最先进的HSI分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信