Bhargav R. Karamched , Jack Schmidt , David Murrugarra
{"title":"Observability of complex systems via conserved quantities","authors":"Bhargav R. Karamched , Jack Schmidt , David Murrugarra","doi":"10.1016/j.physd.2025.134714","DOIUrl":null,"url":null,"abstract":"<div><div>Many systems in biology, physics, and engineering are modeled by nonlinear dynamical systems where the states are usually unknown and only a subset of the state variables can be physically measured. Can we understand the full system from what we measure? In the mathematics literature, this question is framed as the observability problem. It has to do with recovering information about the state variables from the observed states (the measurements). In this paper, we relate the observability problem to another structural feature of many models relevant in the physical and biological sciences: the conserved quantity. For models based on systems of differential equations, conserved quantities offer desirable properties such as dimension reduction which simplifies model analysis. Here, we use differential embeddings to show that conserved quantities involving a set of special variables provide more flexibility in what can be measured to address the observability problem for systems of interest in biology. Specifically, we provide conditions under which a collection of conserved quantities make the system observable. We apply our methods to provide alternate measurable variables in models where conserved quantities have been used for model analysis historically in biological contexts.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"477 ","pages":"Article 134714"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001915","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Many systems in biology, physics, and engineering are modeled by nonlinear dynamical systems where the states are usually unknown and only a subset of the state variables can be physically measured. Can we understand the full system from what we measure? In the mathematics literature, this question is framed as the observability problem. It has to do with recovering information about the state variables from the observed states (the measurements). In this paper, we relate the observability problem to another structural feature of many models relevant in the physical and biological sciences: the conserved quantity. For models based on systems of differential equations, conserved quantities offer desirable properties such as dimension reduction which simplifies model analysis. Here, we use differential embeddings to show that conserved quantities involving a set of special variables provide more flexibility in what can be measured to address the observability problem for systems of interest in biology. Specifically, we provide conditions under which a collection of conserved quantities make the system observable. We apply our methods to provide alternate measurable variables in models where conserved quantities have been used for model analysis historically in biological contexts.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.