Morphology regulation and vacancy engineering for vanadium oxide cathodes via tungsten doping towards advanced zinc-ion batteries

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yangjie Li , Xiaoying Li , Min Xie , Xiangyue Liao , Xuemei he , Qiaoji Zheng , Kwok-Ho Lam , Dunmin Lin
{"title":"Morphology regulation and vacancy engineering for vanadium oxide cathodes via tungsten doping towards advanced zinc-ion batteries","authors":"Yangjie Li ,&nbsp;Xiaoying Li ,&nbsp;Min Xie ,&nbsp;Xiangyue Liao ,&nbsp;Xuemei he ,&nbsp;Qiaoji Zheng ,&nbsp;Kwok-Ho Lam ,&nbsp;Dunmin Lin","doi":"10.1016/j.jcis.2025.137888","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, vanadium oxide of V<sub>6</sub>O<sub>13</sub> has emerged as a promising cathode material for aqueous zinc-ion batteries (AZIBs) due to its high theoretical specific capacity, abundant reserves, and the multiple adjustable oxidation states of vanadium. However, its poor electronic conductivity and severe structural collapse during cycling limit its practical application. Herein, a W<sup>6+</sup>-doped V<sub>6</sub>O<sub>13</sub> nanobelt cathode was synthesized via a one-step solvothermal method. W<sup>6+</sup> doping regulates the morphology of V<sub>6</sub>O<sub>13</sub> from irregular nanosheets into nanobelts, increasing the specific surface area and improving the contact with electrolyte. Furthermore, W<sup>6+</sup>-doping induces more oxygen vacancies and activated more active sites, facilitating rapid diffusion of Zn<sup>2+</sup>. As a result, the WVO cathode delivers a high specific capacity of 472.6 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and 266.4 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup>, with outstanding capacity retention of 82.4 % after 3,000 cycles at 10 A g<sup>−1</sup>. This work provides valuable insights for the design of advanced aqueous zinc-ion cathodes.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"696 ","pages":"Article 137888"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725012792","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, vanadium oxide of V6O13 has emerged as a promising cathode material for aqueous zinc-ion batteries (AZIBs) due to its high theoretical specific capacity, abundant reserves, and the multiple adjustable oxidation states of vanadium. However, its poor electronic conductivity and severe structural collapse during cycling limit its practical application. Herein, a W6+-doped V6O13 nanobelt cathode was synthesized via a one-step solvothermal method. W6+ doping regulates the morphology of V6O13 from irregular nanosheets into nanobelts, increasing the specific surface area and improving the contact with electrolyte. Furthermore, W6+-doping induces more oxygen vacancies and activated more active sites, facilitating rapid diffusion of Zn2+. As a result, the WVO cathode delivers a high specific capacity of 472.6 mAh g−1 at 0.5 A g−1 and 266.4 mAh g−1 at 10 A g−1, with outstanding capacity retention of 82.4 % after 3,000 cycles at 10 A g−1. This work provides valuable insights for the design of advanced aqueous zinc-ion cathodes.
先进锌离子电池中钨掺杂氧化钒阴极的形态调控及空位工程
近年来,钒氧化物V6O13因其较高的理论比容量、丰富的储量以及钒的多种氧化态可调而成为一种很有前途的水性锌离子电池正极材料。但其导电性差,循环过程中结构坍塌严重,限制了其实际应用。本文采用一步溶剂热法合成了W6+掺杂的V6O13纳米带阴极。W6+的掺杂调节了V6O13的形貌,使其从不规则的纳米片变为纳米带,增加了比表面积,改善了与电解质的接触。此外,W6+的掺杂诱导了更多的氧空位,激活了更多的活性位点,促进了Zn2+的快速扩散。因此,WVO阴极在0.5 a g−1和10 a g−1下的比容量分别为472.6 mAh g−1和266.4 mAh g−1,在10 a g−1下循环3000次后的容量保持率为82.4%。这项工作为设计先进的水性锌离子阴极提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信