{"title":"Localizing state space for visual reinforcement learning in noisy environments","authors":"Jing Cheng , Jingchen Li , Haobin Shi , Tao Zhang","doi":"10.1016/j.engappai.2025.110998","DOIUrl":null,"url":null,"abstract":"<div><div>Gaining robust policies is what the visual reinforcement learning community desires. In practical application, the noises in an environment lead to a larger variance in the perception of a reinforcement learning agent. This work introduces a non-differential module into deep reinforcement learning to localize the state space for agents, by which the impact of noises can be greatly reduced, and the learned policy can be explained implicitly. The proposed model leverages a hard attention module for localization, while an additional reinforcement learning process is built to update the localization module. We analyze the relationship between the non-differential module and agent, regarding the whole training as a hierarchical multi-agent reinforcement learning model, ensuring the convergence of policies by centralized evaluation. Moreover, to couple the localization policy and behavior policy, we modify the evaluation processes, gaining more direct coordination for them. The proposed method enables the agent to localize its observation or state in an explainable way, learning more advanced and robust policies by ignoring irrelevant data or changes in noisy environments. That is, it enhances reinforcement learning’s ability to disturbance rejection. Several experiments on simulation environments and Robot Arm suggest our localization module can be embedded into existing reinforcement learning models to enhance them in many respects.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"156 ","pages":"Article 110998"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625009984","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Gaining robust policies is what the visual reinforcement learning community desires. In practical application, the noises in an environment lead to a larger variance in the perception of a reinforcement learning agent. This work introduces a non-differential module into deep reinforcement learning to localize the state space for agents, by which the impact of noises can be greatly reduced, and the learned policy can be explained implicitly. The proposed model leverages a hard attention module for localization, while an additional reinforcement learning process is built to update the localization module. We analyze the relationship between the non-differential module and agent, regarding the whole training as a hierarchical multi-agent reinforcement learning model, ensuring the convergence of policies by centralized evaluation. Moreover, to couple the localization policy and behavior policy, we modify the evaluation processes, gaining more direct coordination for them. The proposed method enables the agent to localize its observation or state in an explainable way, learning more advanced and robust policies by ignoring irrelevant data or changes in noisy environments. That is, it enhances reinforcement learning’s ability to disturbance rejection. Several experiments on simulation environments and Robot Arm suggest our localization module can be embedded into existing reinforcement learning models to enhance them in many respects.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.