Interval quantile correlations with applications to testing high-dimensional quantile effects

IF 9.9 3区 经济学 Q1 ECONOMICS
Yaowu Zhang , Yeqing Zhou , Liping Zhu
{"title":"Interval quantile correlations with applications to testing high-dimensional quantile effects","authors":"Yaowu Zhang ,&nbsp;Yeqing Zhou ,&nbsp;Liping Zhu","doi":"10.1016/j.jeconom.2024.105922","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we propose interval quantile correlation and interval quantile partial correlation to measure the association between two random variables over an interval of quantile levels. We construct efficient estimators for the proposed correlations, and establish their asymptotic properties under the null and alternative hypotheses. We further use the interval quantile partial correlation to test for the significance of covariate effects in high-dimensional quantile regression when a subset of covariates are controlled. We calculate marginal interval quantile partial correlations for each covariate, then aggregate them to construct a sum-type test statistic. The null distribution of our proposed test statistic is asymptotically standard normal. We use extensive simulations and an application to illustrate that our proposed test, which pools information across an interval of quantile levels to enhance power performances, is very effective in detecting quantile effects.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105922"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002732","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose interval quantile correlation and interval quantile partial correlation to measure the association between two random variables over an interval of quantile levels. We construct efficient estimators for the proposed correlations, and establish their asymptotic properties under the null and alternative hypotheses. We further use the interval quantile partial correlation to test for the significance of covariate effects in high-dimensional quantile regression when a subset of covariates are controlled. We calculate marginal interval quantile partial correlations for each covariate, then aggregate them to construct a sum-type test statistic. The null distribution of our proposed test statistic is asymptotically standard normal. We use extensive simulations and an application to illustrate that our proposed test, which pools information across an interval of quantile levels to enhance power performances, is very effective in detecting quantile effects.
区间分位数与测试高维分位数效应的应用程序的相关性
在本文中,我们提出区间分位数相关和区间分位数偏相关来衡量两个随机变量在分位数水平区间上的关联。我们构造了所提出的相关的有效估计量,并在零假设和备假设下建立了它们的渐近性质。我们进一步使用区间分位数偏相关来检验当一组协变量被控制时,高维分位数回归中协变量效应的显著性。我们计算每个协变量的边际区间分位数偏相关,然后将它们汇总以构造求和型检验统计量。我们提出的检验统计量的零分布是渐近标准正态分布。我们使用大量的模拟和应用程序来说明我们提出的测试,该测试在分位数水平区间内汇集信息以提高功率性能,在检测分位数效应方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信