Promotional effect of CeO2 and Fe2O3 species on mesoporous silica as efficient catalysts for the vapor-phase dehydration of iso-butyl alcohol to isobutylene
Walaa A. Elhamdy , Abd El-Aziz A. Said , Mohamed N. Goda , Kamal M.S. Khalil
{"title":"Promotional effect of CeO2 and Fe2O3 species on mesoporous silica as efficient catalysts for the vapor-phase dehydration of iso-butyl alcohol to isobutylene","authors":"Walaa A. Elhamdy , Abd El-Aziz A. Said , Mohamed N. Goda , Kamal M.S. Khalil","doi":"10.1016/j.apcata.2025.120352","DOIUrl":null,"url":null,"abstract":"<div><div>CeO₂–Fe₂O₃ binary oxides were effectively incorporated into mesoporous spherical silica (MCM-41) via a sol–gel technique. The resultant CFO/MCM-41 nanocomposites, with metal loadings ranging from 3 to 30 wt%, were subsequently calcined at 550 °C and assessed as catalysts for the gas-phase dehydration of isobutyl alcohol. Structural and surface analyses using XRD, TG-DTA, ATR-FTIR, BET, TEM, EDX, XPS, and pyridine-adsorbed FTIR confirmed the formation of thermally stable, well-dispersed active phases, as well as the presence of both Lewis and Brønsted acid sites. The differences in catalytic activity among these nanocomposites were closely linked to variations in their acidity. Among all the catalysts, the 10 wt% CeFeO₃/MCM-41 sample demonstrated the best performance at 350 °C, achieving approximately 92 % isobutanol conversion, 100 % selectivity toward isobutylene, and a butene production rate of 45.10 mmol g⁻¹ h⁻¹ . The catalyst also showed excellent stability across five reuse cycles. The outstanding catalytic performance and stability were directly correlated with the material's enhanced structural integrity and optimized textural properties. Furthermore, XPS analysis revealed that the Ce<sup>3 +</sup>/Ce<sup>4+</sup> and Fe<sup>2+</sup>/Fe<sup>3+</sup> redox states, modulated by Ce–Fe interactions, played a crucial role in tuning the catalyst’s acidity and catalytic performance.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"702 ","pages":"Article 120352"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X25002534","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
CeO₂–Fe₂O₃ binary oxides were effectively incorporated into mesoporous spherical silica (MCM-41) via a sol–gel technique. The resultant CFO/MCM-41 nanocomposites, with metal loadings ranging from 3 to 30 wt%, were subsequently calcined at 550 °C and assessed as catalysts for the gas-phase dehydration of isobutyl alcohol. Structural and surface analyses using XRD, TG-DTA, ATR-FTIR, BET, TEM, EDX, XPS, and pyridine-adsorbed FTIR confirmed the formation of thermally stable, well-dispersed active phases, as well as the presence of both Lewis and Brønsted acid sites. The differences in catalytic activity among these nanocomposites were closely linked to variations in their acidity. Among all the catalysts, the 10 wt% CeFeO₃/MCM-41 sample demonstrated the best performance at 350 °C, achieving approximately 92 % isobutanol conversion, 100 % selectivity toward isobutylene, and a butene production rate of 45.10 mmol g⁻¹ h⁻¹ . The catalyst also showed excellent stability across five reuse cycles. The outstanding catalytic performance and stability were directly correlated with the material's enhanced structural integrity and optimized textural properties. Furthermore, XPS analysis revealed that the Ce3 +/Ce4+ and Fe2+/Fe3+ redox states, modulated by Ce–Fe interactions, played a crucial role in tuning the catalyst’s acidity and catalytic performance.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.