Multiway empirical likelihood

IF 9.9 3区 经济学 Q1 ECONOMICS
Harold D. Chiang , Yukitoshi Matsushita , Taisuke Otsu
{"title":"Multiway empirical likelihood","authors":"Harold D. Chiang ,&nbsp;Yukitoshi Matsushita ,&nbsp;Taisuke Otsu","doi":"10.1016/j.jeconom.2024.105861","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a general methodology to conduct statistical inference for observations indexed by multiple sets of entities. We propose a novel multiway empirical likelihood statistic that converges to a chi-square distribution under the non-degenerate case, where corresponding Hoeffding type decomposition is dominated by linear terms. Our methodology is related to the notion of jackknife empirical likelihood but the leave-out pseudo values are constructed by leaving out columns or rows. We further develop a modified version of our multiway empirical likelihood statistic, which converges to a chi-square distribution regardless of the degeneracy, and discuss its desirable higher-order property in a simplified setup. The proposed methodology is illustrated by several important econometric problems, such as bipartite network, generalized estimating equations, and three-way observations.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105861"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002069","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a general methodology to conduct statistical inference for observations indexed by multiple sets of entities. We propose a novel multiway empirical likelihood statistic that converges to a chi-square distribution under the non-degenerate case, where corresponding Hoeffding type decomposition is dominated by linear terms. Our methodology is related to the notion of jackknife empirical likelihood but the leave-out pseudo values are constructed by leaving out columns or rows. We further develop a modified version of our multiway empirical likelihood statistic, which converges to a chi-square distribution regardless of the degeneracy, and discuss its desirable higher-order property in a simplified setup. The proposed methodology is illustrated by several important econometric problems, such as bipartite network, generalized estimating equations, and three-way observations.
多元经验似然
本文提出了一种对由多组实体索引的观测值进行统计推断的一般方法。我们提出了一种新的多路经验似然统计量,在非退化情况下收敛于卡方分布,其中相应的Hoeffding型分解由线性项主导。我们的方法与刀切经验似然的概念有关,但省略的伪值是通过省略列或行来构造的。我们进一步开发了我们的多路经验似然统计量的修改版本,它收敛于卡方分布,而不考虑退化,并讨论了它在简化设置中的理想高阶性质。提出的方法是由几个重要的计量经济学问题,如二部网络,广义估计方程,和三方观察说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信