Universal approximation property of ODENet and ResNet with a single activation function

Masato Kimura , Kazunori Matsui , Yosuke Mizuno
{"title":"Universal approximation property of ODENet and ResNet with a single activation function","authors":"Masato Kimura ,&nbsp;Kazunori Matsui ,&nbsp;Yosuke Mizuno","doi":"10.1016/j.jcmds.2025.100116","DOIUrl":null,"url":null,"abstract":"<div><div>We study a universal approximation property of ODENet and ResNet. The ODENet is a map from an initial value to the final value of an ODE system in a finite interval. It is considered a mathematical model of a ResNet-type deep learning system. We consider dynamical systems with vector fields given by a single composition of the activation function and an affine mapping, which is the most common choice of the ODENet or ResNet vector field in actual machine learning systems. We demonstrate that both ODENets and ResNets with the restricted vector field of a single composition of the activation function and an affine mapping can uniformly approximate ODENets within the broader class that utilize a general vector field.</div></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"15 ","pages":"Article 100116"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415825000082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a universal approximation property of ODENet and ResNet. The ODENet is a map from an initial value to the final value of an ODE system in a finite interval. It is considered a mathematical model of a ResNet-type deep learning system. We consider dynamical systems with vector fields given by a single composition of the activation function and an affine mapping, which is the most common choice of the ODENet or ResNet vector field in actual machine learning systems. We demonstrate that both ODENets and ResNets with the restricted vector field of a single composition of the activation function and an affine mapping can uniformly approximate ODENets within the broader class that utilize a general vector field.
单一激活函数下ODENet和ResNet的普遍逼近性质
我们研究了ODENet和ResNet的普遍近似性质。ODENet是ODE系统在有限区间内从初始值到最终值的映射。它被认为是resnet型深度学习系统的数学模型。我们考虑具有由激活函数和仿射映射的单一组合给出的矢量场的动态系统,这是实际机器学习系统中ODENet或ResNet矢量场的最常见选择。我们证明了ODENets和ResNets都具有激活函数和仿射映射的单一组合的受限向量场,可以在使用一般向量场的更广泛的类中一致地近似ODENets。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信