Spatio-temporal prediction using graph neural networks: A survey

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Vincenzo Capone, Angelo Casolaro, Francesco Camastra
{"title":"Spatio-temporal prediction using graph neural networks: A survey","authors":"Vincenzo Capone,&nbsp;Angelo Casolaro,&nbsp;Francesco Camastra","doi":"10.1016/j.neucom.2025.130400","DOIUrl":null,"url":null,"abstract":"<div><div>The analysis of spatial time series is increasingly relevant as spatio-temporal data are becoming widespread due to the ever-growing diffusion of data acquisition devices. Spatio-temporal prediction is crucial for grasping insights on spatio-temporal dynamics in diverse domains. In many cases, spatio-temporal data can be effectively represented using graphs, thus making Graph Neural Networks the most sounding deep learning architecture for the modelling of spatio-temporal series. The aim of the work is to provide a self-consistent and thorough overview on Graph Neural Networks for spatio-temporal prediction, giving a taxonomy of the diverse approaches proposed in the literature. Moreover, attention is paid to the description of the most used benchmarks and metrics in different real-world spatio-temporal domains and to the discussion of the main drawbacks of spatio-temporal Graph Neural Networks. Furthermore, unlike other similar works on deep learning, statistical methods for spatio-temporal modelling are briefly surveyed in this work. Finally, insights on future developments of Graph Neural Networks for spatio-temporal prediction are suggested.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"643 ","pages":"Article 130400"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225010720","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of spatial time series is increasingly relevant as spatio-temporal data are becoming widespread due to the ever-growing diffusion of data acquisition devices. Spatio-temporal prediction is crucial for grasping insights on spatio-temporal dynamics in diverse domains. In many cases, spatio-temporal data can be effectively represented using graphs, thus making Graph Neural Networks the most sounding deep learning architecture for the modelling of spatio-temporal series. The aim of the work is to provide a self-consistent and thorough overview on Graph Neural Networks for spatio-temporal prediction, giving a taxonomy of the diverse approaches proposed in the literature. Moreover, attention is paid to the description of the most used benchmarks and metrics in different real-world spatio-temporal domains and to the discussion of the main drawbacks of spatio-temporal Graph Neural Networks. Furthermore, unlike other similar works on deep learning, statistical methods for spatio-temporal modelling are briefly surveyed in this work. Finally, insights on future developments of Graph Neural Networks for spatio-temporal prediction are suggested.
基于图神经网络的时空预测研究进展
随着数据采集设备的日益普及,时空数据变得越来越广泛,空间时间序列的分析变得越来越重要。时空预测对于把握不同领域的时空动态至关重要。在许多情况下,时空数据可以使用图有效地表示,从而使图神经网络成为时空序列建模中最可靠的深度学习架构。这项工作的目的是为图神经网络的时空预测提供一个自一致和全面的概述,给出了文献中提出的不同方法的分类。此外,本文还关注了在不同的现实世界时空域中最常用的基准和指标的描述,并讨论了时空图神经网络的主要缺点。此外,与其他类似的深度学习工作不同,本文简要介绍了时空建模的统计方法。最后,对图神经网络在时空预测领域的未来发展提出了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信