{"title":"Sparse modeling for image inpainting: A multi-scale morphological patch-based k-SVD and group-based PCA","authors":"Amit Soni Arya, Susanta Mukhopadhyay","doi":"10.1016/j.image.2025.117341","DOIUrl":null,"url":null,"abstract":"<div><div>Image inpainting, a crucial task in image restoration, aims to reconstruct highly degraded images with missing pixels while preserving structural and textural integrity. Traditional patch-based and group-based sparse representation methods often struggle with visual artifacts and over-smoothing, limiting their effectiveness. To address these challenges, we propose a novel multi-scale morphological patch-based and group-based sparse representation learning approach for image inpainting. Our method enhances image inpainting by integrating morphological patch-based sparse representation (M-PSR) learning using k-singular value decomposition (k-SVD) and group-based sparse representation using principal component analysis (PCA) to construct adaptive dictionaries for improved reconstruction accuracy. Additionally, we employ the alternating direction method of multipliers (ADMM) to optimize the integration of morphological patch and group based sparse representations, enhancing restoration quality. Extensive experiments on various degraded images demonstrate that our approach outperforms state-of-the-art methods in terms of the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). The proposed method effectively reconstructs images corrupted by missing pixels, scratches, and text inlays, achieving superior structural coherence and perceptual quality. This work contributes a robust and efficient solution for image inpainting, offering significant advances in sparse modeling and morphological image processing.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"138 ","pages":"Article 117341"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596525000876","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Image inpainting, a crucial task in image restoration, aims to reconstruct highly degraded images with missing pixels while preserving structural and textural integrity. Traditional patch-based and group-based sparse representation methods often struggle with visual artifacts and over-smoothing, limiting their effectiveness. To address these challenges, we propose a novel multi-scale morphological patch-based and group-based sparse representation learning approach for image inpainting. Our method enhances image inpainting by integrating morphological patch-based sparse representation (M-PSR) learning using k-singular value decomposition (k-SVD) and group-based sparse representation using principal component analysis (PCA) to construct adaptive dictionaries for improved reconstruction accuracy. Additionally, we employ the alternating direction method of multipliers (ADMM) to optimize the integration of morphological patch and group based sparse representations, enhancing restoration quality. Extensive experiments on various degraded images demonstrate that our approach outperforms state-of-the-art methods in terms of the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). The proposed method effectively reconstructs images corrupted by missing pixels, scratches, and text inlays, achieving superior structural coherence and perceptual quality. This work contributes a robust and efficient solution for image inpainting, offering significant advances in sparse modeling and morphological image processing.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.