Uncertainties in outcome modelling in radiation oncology

IF 3.4 Q2 ONCOLOGY
Lukas Dünger , Emily Mäusel , Alex Zwanenburg , Steffen Löck
{"title":"Uncertainties in outcome modelling in radiation oncology","authors":"Lukas Dünger ,&nbsp;Emily Mäusel ,&nbsp;Alex Zwanenburg ,&nbsp;Steffen Löck","doi":"10.1016/j.phro.2025.100774","DOIUrl":null,"url":null,"abstract":"<div><div>Outcome models predicting e.g. survival, tumour control or radiation-induced toxicities play an important role in the field of radiation oncology. These models aim to support the clinical decision making and pave the way towards personalised treatment. Both validity and reliability of their output are required to facilitate clinical integration. However, models are influenced by uncertainties, arising from data used for model development and model parameters, among others. Therefore, quantifying model uncertainties and addressing their causes promotes the creation of models that are sufficiently reliable for clinical use. This topical review aims to summarise different types and possible sources of uncertainties, presents uncertainty quantification methods applicable to various modelling approaches, and highlights central challenges that need to be addressed in the future.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"34 ","pages":"Article 100774"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240563162500079X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Outcome models predicting e.g. survival, tumour control or radiation-induced toxicities play an important role in the field of radiation oncology. These models aim to support the clinical decision making and pave the way towards personalised treatment. Both validity and reliability of their output are required to facilitate clinical integration. However, models are influenced by uncertainties, arising from data used for model development and model parameters, among others. Therefore, quantifying model uncertainties and addressing their causes promotes the creation of models that are sufficiently reliable for clinical use. This topical review aims to summarise different types and possible sources of uncertainties, presents uncertainty quantification methods applicable to various modelling approaches, and highlights central challenges that need to be addressed in the future.
放射肿瘤学结果模型的不确定性
结果模型预测如生存,肿瘤控制或辐射引起的毒性在放射肿瘤学领域发挥重要作用。这些模型旨在支持临床决策,并为个性化治疗铺平道路。其输出的有效性和可靠性都是促进临床整合所必需的。然而,模型受到不确定性的影响,这些不确定性来自于用于模型开发的数据和模型参数等。因此,量化模型的不确定性并解决其原因有助于建立足够可靠的模型,以供临床使用。本专题综述旨在总结不确定性的不同类型和可能的来源,提出适用于各种建模方法的不确定性量化方法,并强调未来需要解决的核心挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信