Cloud based collaborative data compression technology for power Internet of Things

IF 4.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qiong Wang , Yongbo Zhou , Jianyong Gao
{"title":"Cloud based collaborative data compression technology for power Internet of Things","authors":"Qiong Wang ,&nbsp;Yongbo Zhou ,&nbsp;Jianyong Gao","doi":"10.1016/j.eij.2025.100696","DOIUrl":null,"url":null,"abstract":"<div><div>To address the challenge of explosive data growth in power IoT systems, this study develops a cloud-edge collaborative multi-task computing framework for efficient compression of heterogeneous data. The proposed system builds upon a “microservice-containerization-Kubernetes” architecture that enables parallel processing of multi-source IoT data collected through perception layer devices. At the edge layer, a hybrid performance ontology algorithm first integrates diverse data sources, followed by a two-stage compression approach: wavelet transforms perform initial data aggregation, while tensor Tucker decomposition enables secondary compression for optimized data reduction. Experimental results demonstrate the framework’s effectiveness in maintaining stable IoT network operations while achieving compression ratios below 40%, significantly improving upon traditional methods in both efficiency and reliability for power IoT applications.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"30 ","pages":"Article 100696"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000891","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenge of explosive data growth in power IoT systems, this study develops a cloud-edge collaborative multi-task computing framework for efficient compression of heterogeneous data. The proposed system builds upon a “microservice-containerization-Kubernetes” architecture that enables parallel processing of multi-source IoT data collected through perception layer devices. At the edge layer, a hybrid performance ontology algorithm first integrates diverse data sources, followed by a two-stage compression approach: wavelet transforms perform initial data aggregation, while tensor Tucker decomposition enables secondary compression for optimized data reduction. Experimental results demonstrate the framework’s effectiveness in maintaining stable IoT network operations while achieving compression ratios below 40%, significantly improving upon traditional methods in both efficiency and reliability for power IoT applications.
基于云的电力物联网协同数据压缩技术
为了应对电力物联网系统中爆炸性数据增长的挑战,本研究开发了一个云边缘协作多任务计算框架,用于有效压缩异构数据。该系统建立在“微服务-容器化- kubernetes”架构之上,可以并行处理通过感知层设备收集的多源物联网数据。在边缘层,混合性能本体算法首先集成各种数据源,然后采用两阶段压缩方法:小波变换进行初始数据聚合,而张量Tucker分解进行二次压缩以优化数据缩减。实验结果表明,该框架在保持物联网网络稳定运行的同时,压缩比低于40%,显著提高了传统方法在功率物联网应用中的效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信