Paras Stefanopoulos , Sourin Chatterjee , Ahad N. Zehmakan
{"title":"A first principles approach to trust-based recommendation systems in social networks","authors":"Paras Stefanopoulos , Sourin Chatterjee , Ahad N. Zehmakan","doi":"10.1016/j.osnem.2025.100315","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores recommender systems in social networks which leverage information such as item rating, intra-item similarities, and trust graph. We demonstrate that item-rating information is more influential than other information types in a collaborative filtering approach. The trust graph-based approaches were found to be more robust to network adversarial attacks due to hard-to-manipulate trust structures. Intra-item information, although sub-optimal in isolation, enhances the consistency of predictions and lower-end performance when fused with other information forms. Additionally, the Weighted Average framework is introduced, enabling the construction of recommendation systems around any user-to-user similarity metric.</div></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":"47 ","pages":"Article 100315"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696425000163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores recommender systems in social networks which leverage information such as item rating, intra-item similarities, and trust graph. We demonstrate that item-rating information is more influential than other information types in a collaborative filtering approach. The trust graph-based approaches were found to be more robust to network adversarial attacks due to hard-to-manipulate trust structures. Intra-item information, although sub-optimal in isolation, enhances the consistency of predictions and lower-end performance when fused with other information forms. Additionally, the Weighted Average framework is introduced, enabling the construction of recommendation systems around any user-to-user similarity metric.