Tingfeng Shen , Yutong Wang , Linmao Cheng , Ann M. Bode , Ya Gao , Shuntong Zhang , Xue Chen , Xiangjian Luo
{"title":"Oxidative complexity: The role of ROS in the tumor environment and therapeutic implications","authors":"Tingfeng Shen , Yutong Wang , Linmao Cheng , Ann M. Bode , Ya Gao , Shuntong Zhang , Xue Chen , Xiangjian Luo","doi":"10.1016/j.bmc.2025.118241","DOIUrl":null,"url":null,"abstract":"<div><div>Reactive oxygen species (ROS) constitutes a group of reactive molecules that play a critical role in biological processes. Varying ROS levels have been frequently observed in cancer cells and the tumor microenvironment (TME). The role of ROS displays significant complexity in cancer development and therapy. Elevated ROS levels can induce metabolic reprogramming and promote the proliferation, invasion, and metastasis of cancer cells, resulting in cancer progression. However, excessive ROS accumulation leads to the occurrence of apoptosis, pyroptosis, necroptosis, and ferroptosis in cancer cells, which restrains tumor development. In the TME, ROS frequently promotes angiogenesis and remodels the extracellular matrix (ECM) by enhancing the differentiation of cancer-associated fibroblasts (CAFs), thereby supporting tumor growth. Concurrently, high ROS levels favour immunosuppressive cells, including M2-polarized macrophages, and regulatory T cells (Tregs), while impairing the antitumor capabilities of T cells. In the aspect of cancer therapy, it is overly simplistic to merely combine chemoradiotherapy with antioxidants as a therapeutic strategy. Instead, highlighting targeted therapies that modulate ROS is essential, given their inherent complexity. Fortunately, a variety of innovative treatments have emerged, including nanodrug delivery systems (NDDS), proteolysis-targeting chimeras (PROTAC), and adoptive cell therapy (ADT), which not only exhibit synergistic effects with immune checkpoint therapy (ICT), but also enhance the antitumor capabilities of the TME. In this paper, we elucidate the mechanism of ROS production, enumerate the role of ROS in cancer development and the TME, and discuss advancements in ROS-targeted cancer therapeutics.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"127 ","pages":"Article 118241"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089625001828","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive oxygen species (ROS) constitutes a group of reactive molecules that play a critical role in biological processes. Varying ROS levels have been frequently observed in cancer cells and the tumor microenvironment (TME). The role of ROS displays significant complexity in cancer development and therapy. Elevated ROS levels can induce metabolic reprogramming and promote the proliferation, invasion, and metastasis of cancer cells, resulting in cancer progression. However, excessive ROS accumulation leads to the occurrence of apoptosis, pyroptosis, necroptosis, and ferroptosis in cancer cells, which restrains tumor development. In the TME, ROS frequently promotes angiogenesis and remodels the extracellular matrix (ECM) by enhancing the differentiation of cancer-associated fibroblasts (CAFs), thereby supporting tumor growth. Concurrently, high ROS levels favour immunosuppressive cells, including M2-polarized macrophages, and regulatory T cells (Tregs), while impairing the antitumor capabilities of T cells. In the aspect of cancer therapy, it is overly simplistic to merely combine chemoradiotherapy with antioxidants as a therapeutic strategy. Instead, highlighting targeted therapies that modulate ROS is essential, given their inherent complexity. Fortunately, a variety of innovative treatments have emerged, including nanodrug delivery systems (NDDS), proteolysis-targeting chimeras (PROTAC), and adoptive cell therapy (ADT), which not only exhibit synergistic effects with immune checkpoint therapy (ICT), but also enhance the antitumor capabilities of the TME. In this paper, we elucidate the mechanism of ROS production, enumerate the role of ROS in cancer development and the TME, and discuss advancements in ROS-targeted cancer therapeutics.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.