Habitat suitability of Thunnus spp. in the Northern South China Sea based on the MaxEnt species distribution model

IF 2.1 4区 环境科学与生态学 Q3 ECOLOGY
Alma Alfatat, Hagai Nsobi Lauden, Shaoliang Lyu, Jiayi Chen, Jianyu Dong, Ning Chen, Xuefeng Wang
{"title":"Habitat suitability of Thunnus spp. in the Northern South China Sea based on the MaxEnt species distribution model","authors":"Alma Alfatat,&nbsp;Hagai Nsobi Lauden,&nbsp;Shaoliang Lyu,&nbsp;Jiayi Chen,&nbsp;Jianyu Dong,&nbsp;Ning Chen,&nbsp;Xuefeng Wang","doi":"10.1016/j.rsma.2025.104238","DOIUrl":null,"url":null,"abstract":"<div><div>Tuna (<em>Thunnus</em> spp.) are apex predators and vital fishery resources in the Northern South China Sea. This study assesses the habitat suitability of tuna (<em>Thunnus</em> spp.) in the northern South China Sea using the MaxEnt model to analyze seasonal shifts and key environmental drivers from 2016 to 2020. Tuna occurrence data from the Guangdong Fishery Resources Data Collection System, along with environmental variables (Chlorophyll-a, sea surface salinity, sea surface height, and temperature), were utilized. Model performance was validated using the AUC and verified with catch per unit effort (CPUE) data. The model demonstrated a satisfactory predictive performance, with AUC TRAIN values ranging from 0.805 to 0.864, AUC TEST values from 0.795 to 0.839. Chl-a was the primary driver in spring, whereas SSS had a greater influence in autumn, with optimal SST ranging from 24 °C to 27°C. Suitable habitat (HSI &gt; 0.8) reached its highest spatial coverage in April (7525 km²) and September (9656 km²), aligning with increased CPUE values during those periods. The model effectively captured seasonal variations in the species' spatial distribution; further refinement using additional predictors may lead to more accurate predictions. These findings provide important insights for adaptive fisheries management, supporting informed responses to climate-driven changes and promoting the future sustainability of regional tuna populations.</div></div>","PeriodicalId":21070,"journal":{"name":"Regional Studies in Marine Science","volume":"87 ","pages":"Article 104238"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regional Studies in Marine Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352485525002294","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tuna (Thunnus spp.) are apex predators and vital fishery resources in the Northern South China Sea. This study assesses the habitat suitability of tuna (Thunnus spp.) in the northern South China Sea using the MaxEnt model to analyze seasonal shifts and key environmental drivers from 2016 to 2020. Tuna occurrence data from the Guangdong Fishery Resources Data Collection System, along with environmental variables (Chlorophyll-a, sea surface salinity, sea surface height, and temperature), were utilized. Model performance was validated using the AUC and verified with catch per unit effort (CPUE) data. The model demonstrated a satisfactory predictive performance, with AUC TRAIN values ranging from 0.805 to 0.864, AUC TEST values from 0.795 to 0.839. Chl-a was the primary driver in spring, whereas SSS had a greater influence in autumn, with optimal SST ranging from 24 °C to 27°C. Suitable habitat (HSI > 0.8) reached its highest spatial coverage in April (7525 km²) and September (9656 km²), aligning with increased CPUE values during those periods. The model effectively captured seasonal variations in the species' spatial distribution; further refinement using additional predictors may lead to more accurate predictions. These findings provide important insights for adaptive fisheries management, supporting informed responses to climate-driven changes and promoting the future sustainability of regional tuna populations.
基于MaxEnt物种分布模型的南海北部黄鳝生境适宜性研究
金枪鱼(Thunnus spp.)是南海北部的顶级捕食者和重要的渔业资源。利用MaxEnt模型分析了2016 - 2020年南海北部金枪鱼(Thunnus spp.)的季节变化和主要环境驱动因素,对其生境适宜性进行了评估。利用广东省渔业资源数据收集系统的金枪鱼发生数据,以及环境变量(叶绿素-a、海面盐度、海面高度和温度)。使用AUC验证模型性能,并使用每单位工作量捕获(CPUE)数据验证模型性能。模型的AUC TRAIN值在0.805 ~ 0.864之间,AUC TEST值在0.795 ~ 0.839之间,具有较好的预测效果。Chl-a是春季的主要驱动因素,而SSS对秋季的影响更大,最佳海温在24 ~ 27℃范围内。适宜生境(HSI >;0.8)的空间覆盖率在4月(7525 km²)和9月(9656 km²)达到最高,这与CPUE值在这两个时期的增加相一致。该模型有效地捕捉到了物种空间分布的季节变化;使用额外的预测器进一步细化可能会导致更准确的预测。这些发现为适应性渔业管理提供了重要见解,支持对气候驱动的变化做出明智的反应,并促进区域金枪鱼种群的未来可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Regional Studies in Marine Science
Regional Studies in Marine Science Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
3.90
自引率
4.80%
发文量
336
审稿时长
69 days
期刊介绍: REGIONAL STUDIES IN MARINE SCIENCE will publish scientifically sound papers on regional aspects of maritime and marine resources in estuaries, coastal zones, continental shelf, the seas and oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信