ANN-based prediction of compressive strength in cement and polystyrene-stabilized earth bricks

Géraldine Gouafo Kougoum , Dieunedort Ndapeu , Giresse Ulrich Defo Tatchum , Morino Bernard Ganou Koungang , Mathurin Gouafo Zoyem , René Tchinda
{"title":"ANN-based prediction of compressive strength in cement and polystyrene-stabilized earth bricks","authors":"Géraldine Gouafo Kougoum ,&nbsp;Dieunedort Ndapeu ,&nbsp;Giresse Ulrich Defo Tatchum ,&nbsp;Morino Bernard Ganou Koungang ,&nbsp;Mathurin Gouafo Zoyem ,&nbsp;René Tchinda","doi":"10.1016/j.rsurfi.2025.100556","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for environmentally-friendly building materials has led to a renewed interest in earth bricks. To facilitate their use, it would be ideal to know their physical properties, in particular their compressive strength. This study utilizes ANN and regression techniques to predict the compressive strength of cement-stabilized compressed earth bricks (CEB) with expanded polystyrene (EPS) granules, facilitating their application in the construction industry. The input parameters used for training our models include optimum cement and water content, polystyrene content, hardening age, and amount of clay content. The database was created through literature reviews experiments in order to propose equations for predicting compressive strength. The best model was achieved using ANN, with performance metrics of R<sup>2</sup> = 0.97, RMSE = 0.82 MPa, and MAE = 6.62 MPa, outperforming multivariate regression. This study provides us with an artificial intelligence model for predicting the compressive strength of CEBs with EPS granules.</div></div>","PeriodicalId":21085,"journal":{"name":"Results in Surfaces and Interfaces","volume":"19 ","pages":"Article 100556"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Surfaces and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666845925001436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for environmentally-friendly building materials has led to a renewed interest in earth bricks. To facilitate their use, it would be ideal to know their physical properties, in particular their compressive strength. This study utilizes ANN and regression techniques to predict the compressive strength of cement-stabilized compressed earth bricks (CEB) with expanded polystyrene (EPS) granules, facilitating their application in the construction industry. The input parameters used for training our models include optimum cement and water content, polystyrene content, hardening age, and amount of clay content. The database was created through literature reviews experiments in order to propose equations for predicting compressive strength. The best model was achieved using ANN, with performance metrics of R2 = 0.97, RMSE = 0.82 MPa, and MAE = 6.62 MPa, outperforming multivariate regression. This study provides us with an artificial intelligence model for predicting the compressive strength of CEBs with EPS granules.
基于人工神经网络的水泥和聚苯乙烯稳定土砖抗压强度预测
对环保建筑材料的需求不断增长,导致人们对土砖重新产生了兴趣。为了便于使用,最好了解它们的物理性质,特别是抗压强度。本研究利用人工神经网络和回归技术对膨胀聚苯乙烯(EPS)颗粒水泥稳定压缩土砖(CEB)的抗压强度进行预测,促进其在建筑工业中的应用。用于训练模型的输入参数包括最佳水泥和水含量、聚苯乙烯含量、硬化年龄和粘土含量。该数据库是通过文献综述实验建立的,以便提出预测抗压强度的方程。人工神经网络模型的性能指标R2 = 0.97, RMSE = 0.82 MPa, MAE = 6.62 MPa,优于多元回归模型。本研究为EPS颗粒ceb的抗压强度预测提供了一个人工智能模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信