Walter Bova , Eugene Nijman , Markus Polanz , Domenico Mundo
{"title":"Design of a slow sound based meta-poro-elastic material with enhanced absorption capabilities","authors":"Walter Bova , Eugene Nijman , Markus Polanz , Domenico Mundo","doi":"10.1016/j.jsv.2025.119137","DOIUrl":null,"url":null,"abstract":"<div><div>Poroelastic foams are generally efficient to absorb sound. Thanks to their typical extensive air-solid interface, these materials are able to dissipate energy through viscous and thermal interactions. However, because of their absorption mechanisms, they have a low absorption efficiency at wavelengths much larger than the layer thickness. Works on the optimization of the pore design have shown that little improvement can be obtained at low frequencies. Meso-scale inclusions embedded in foam-like materials have been employed to address this problem and broaden the working frequency ranges, mainly through resonance phenomena. Although the subwavelength resonators effectively absorb sound in the low frequency range, the sizes needed to achieve low frequency performance frequently prohibit practical use. In this work we demonstrate how compact sound absorbing panels can be designed by exploiting the slow sound propagation achieved in flexible rubber tubes. An axisymmetric FEM formulation is developed and an optimization of the Biot parameters is carried out. The designed meta-poro-elastic material, obtained by embedding rubber quarter wave resonators in a poroelastic foam, is able to absorb well the low frequency noise while keeping good absorption capabilities at high frequency.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"613 ","pages":"Article 119137"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25002111","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Poroelastic foams are generally efficient to absorb sound. Thanks to their typical extensive air-solid interface, these materials are able to dissipate energy through viscous and thermal interactions. However, because of their absorption mechanisms, they have a low absorption efficiency at wavelengths much larger than the layer thickness. Works on the optimization of the pore design have shown that little improvement can be obtained at low frequencies. Meso-scale inclusions embedded in foam-like materials have been employed to address this problem and broaden the working frequency ranges, mainly through resonance phenomena. Although the subwavelength resonators effectively absorb sound in the low frequency range, the sizes needed to achieve low frequency performance frequently prohibit practical use. In this work we demonstrate how compact sound absorbing panels can be designed by exploiting the slow sound propagation achieved in flexible rubber tubes. An axisymmetric FEM formulation is developed and an optimization of the Biot parameters is carried out. The designed meta-poro-elastic material, obtained by embedding rubber quarter wave resonators in a poroelastic foam, is able to absorb well the low frequency noise while keeping good absorption capabilities at high frequency.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.