Chuixing Wu , Jincheng Xie , Fangrong Liang , Weixiong Zhong , Ruimeng Yang , Yuankui Wu , Tao Liang , Linjing Wang , Xin Zhen
{"title":"REPAIR: Reciprocal assistance imputation-representation learning for glioma diagnosis with incomplete MRI sequences","authors":"Chuixing Wu , Jincheng Xie , Fangrong Liang , Weixiong Zhong , Ruimeng Yang , Yuankui Wu , Tao Liang , Linjing Wang , Xin Zhen","doi":"10.1016/j.media.2025.103634","DOIUrl":null,"url":null,"abstract":"<div><div>The absence of MRI sequences is a common occurrence in clinical practice, posing a significant challenge for prediction modeling of non-invasive diagnosis of glioma (GM) via fusion of multi-sequence MRI. To address this issue, we propose a novel unified reciprocal assistance imputation-representation learning framework (namely REPAIR) for GM diagnosis modeling with incomplete MRI sequences. REPAIR facilitates a cooperative process between missing value imputation and multi-sequence MRI fusion by leveraging existing samples to inform the imputation of missing values. This, in turn, facilitates the learning of a shared latent representation, which reciprocally guides more accurate imputation of missing values. To tailor the learned representation for downstream tasks, a novel ambiguity-aware intercorrelation regularization is introduced to equip REPAIR by correlating imputation ambiguity and its impacts conveying to the learned representation via a fuzzy paradigm. Additionally, a multimodal structural calibration constraint is devised to correct for the structural shift caused by missing data, ensuring structural consistency between the learned representations and the actual data. The proposed methodology is extensively validated on eight GM datasets with incomplete MRI sequences and six clinical datasets from other diseases with incomplete imaging modalities. Comprehensive comparisons with state-of-the-art methods have demonstrated the competitiveness of our approach for GM diagnosis with incomplete MRI sequences, as well as its potential for generalization to various diseases with missing imaging modalities.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103634"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001811","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The absence of MRI sequences is a common occurrence in clinical practice, posing a significant challenge for prediction modeling of non-invasive diagnosis of glioma (GM) via fusion of multi-sequence MRI. To address this issue, we propose a novel unified reciprocal assistance imputation-representation learning framework (namely REPAIR) for GM diagnosis modeling with incomplete MRI sequences. REPAIR facilitates a cooperative process between missing value imputation and multi-sequence MRI fusion by leveraging existing samples to inform the imputation of missing values. This, in turn, facilitates the learning of a shared latent representation, which reciprocally guides more accurate imputation of missing values. To tailor the learned representation for downstream tasks, a novel ambiguity-aware intercorrelation regularization is introduced to equip REPAIR by correlating imputation ambiguity and its impacts conveying to the learned representation via a fuzzy paradigm. Additionally, a multimodal structural calibration constraint is devised to correct for the structural shift caused by missing data, ensuring structural consistency between the learned representations and the actual data. The proposed methodology is extensively validated on eight GM datasets with incomplete MRI sequences and six clinical datasets from other diseases with incomplete imaging modalities. Comprehensive comparisons with state-of-the-art methods have demonstrated the competitiveness of our approach for GM diagnosis with incomplete MRI sequences, as well as its potential for generalization to various diseases with missing imaging modalities.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.