Tongtong Che , Lin Zhang , Debin Zeng , Yan Zhao , Haoying Bai , Jichang Zhang , Xiuying Wang , Shuyu Li
{"title":"Nested hierarchical group-wise registration with a graph-based subgrouping strategy for efficient template construction","authors":"Tongtong Che , Lin Zhang , Debin Zeng , Yan Zhao , Haoying Bai , Jichang Zhang , Xiuying Wang , Shuyu Li","doi":"10.1016/j.media.2025.103624","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and efficient group-wise registration for medical images is fundamentally important to construct a common template image for population-level analysis. However, current group-wise registration faces the challenges posed by the algorithm’s efficiency and capacity, and adaptability to large variations in the subject populations. This paper addresses these challenges with a novel Nested Hierarchical Group-wise Registration (NHGR) framework. Firstly, to alleviate the registration burden due to significant population variations, a new subgrouping strategy is proposed to serve as a “divide and conquer” mechanism that divides a large population into smaller subgroups. The subgroups with a hierarchical sequence are formed by gradually expanding the scale factors that relate to feature similarity and then conducting registration at the subgroup scale as the multi-scale conquer strategy. Secondly, the nested hierarchical group-wise registration is proposed to conquer the challenges due to the efficiency and capacity of the model from three perspectives. (1) Population level: the global group-wise registration is performed to generate age-related sub-templates from local subgroups progressively to the global population. (2) Subgroup level: the local group-wise registration is performed based on local image distributions to reduce registration error and achieve rapid optimization of sub-templates. (3) Image pair level: a deep multi-resolution registration network is employed for better registration efficiency. The proposed framework was evaluated on the brain datasets of adults and adolescents, respectively from 18 to 96 years and 5 to 21 years. Experimental results consistently demonstrated that our proposed group-wise registration method achieved better performance in terms of registration efficiency, template sharpness, and template centrality.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103624"},"PeriodicalIF":11.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001719","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and efficient group-wise registration for medical images is fundamentally important to construct a common template image for population-level analysis. However, current group-wise registration faces the challenges posed by the algorithm’s efficiency and capacity, and adaptability to large variations in the subject populations. This paper addresses these challenges with a novel Nested Hierarchical Group-wise Registration (NHGR) framework. Firstly, to alleviate the registration burden due to significant population variations, a new subgrouping strategy is proposed to serve as a “divide and conquer” mechanism that divides a large population into smaller subgroups. The subgroups with a hierarchical sequence are formed by gradually expanding the scale factors that relate to feature similarity and then conducting registration at the subgroup scale as the multi-scale conquer strategy. Secondly, the nested hierarchical group-wise registration is proposed to conquer the challenges due to the efficiency and capacity of the model from three perspectives. (1) Population level: the global group-wise registration is performed to generate age-related sub-templates from local subgroups progressively to the global population. (2) Subgroup level: the local group-wise registration is performed based on local image distributions to reduce registration error and achieve rapid optimization of sub-templates. (3) Image pair level: a deep multi-resolution registration network is employed for better registration efficiency. The proposed framework was evaluated on the brain datasets of adults and adolescents, respectively from 18 to 96 years and 5 to 21 years. Experimental results consistently demonstrated that our proposed group-wise registration method achieved better performance in terms of registration efficiency, template sharpness, and template centrality.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.