Over-squashing in Graph Neural Networks: A comprehensive survey

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
S. Akansha
{"title":"Over-squashing in Graph Neural Networks: A comprehensive survey","authors":"S. Akansha","doi":"10.1016/j.neucom.2025.130389","DOIUrl":null,"url":null,"abstract":"<div><div>Graph Neural Networks (GNNs) revolutionize machine learning for graph-structured data, effectively capturing complex relationships. They disseminate information through interconnected nodes, but long-range interactions face challenges known as ”over-squashing”. This survey delves into the challenge of over-squashing in GNNs, where long-range information dissemination is hindered, impacting tasks reliant on intricate long-distance interactions. It comprehensively explores the causes, consequences, and mitigation strategies for over-squashing. Various methodologies are reviewed, including graph rewiring, novel normalization, spectral analysis, and curvature-based strategies, with a focus on their trade-offs and effectiveness. The survey also discusses the interplay between over-squashing and other GNN limitations, such as over-smoothing, and provides a taxonomy of models designed to address these issues in node and graph-level tasks. Benchmark datasets for performance evaluation are also detailed, making this survey a valuable resource for researchers and practitioners in the GNN field.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"642 ","pages":"Article 130389"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225010616","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Graph Neural Networks (GNNs) revolutionize machine learning for graph-structured data, effectively capturing complex relationships. They disseminate information through interconnected nodes, but long-range interactions face challenges known as ”over-squashing”. This survey delves into the challenge of over-squashing in GNNs, where long-range information dissemination is hindered, impacting tasks reliant on intricate long-distance interactions. It comprehensively explores the causes, consequences, and mitigation strategies for over-squashing. Various methodologies are reviewed, including graph rewiring, novel normalization, spectral analysis, and curvature-based strategies, with a focus on their trade-offs and effectiveness. The survey also discusses the interplay between over-squashing and other GNN limitations, such as over-smoothing, and provides a taxonomy of models designed to address these issues in node and graph-level tasks. Benchmark datasets for performance evaluation are also detailed, making this survey a valuable resource for researchers and practitioners in the GNN field.
图神经网络中的过压:综合综述
图神经网络(gnn)彻底改变了图结构数据的机器学习,有效地捕获了复杂的关系。它们通过相互连接的节点传播信息,但远程交互面临着被称为“过度挤压”的挑战。该调查深入研究了gnn中过度压缩的挑战,其中远程信息传播受阻,影响依赖于复杂的远程交互的任务。它全面探讨了过度挤压的原因、后果和缓解策略。回顾了各种方法,包括图重新布线,新的规范化,光谱分析和基于曲率的策略,重点是它们的权衡和有效性。该调查还讨论了过度压缩和其他GNN限制(如过度平滑)之间的相互作用,并提供了用于解决节点和图级任务中这些问题的模型分类。性能评估的基准数据集也很详细,使本调查成为GNN领域的研究人员和从业者的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信