Diagnosis of thyroid cartilage invasion by laryngeal and hypopharyngeal cancers based on CT with deep learning

IF 3.2 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yuki Takano , Noriyuki Fujima , Junichi Nakagawa , Hiroki Dobashi , Yukie Shimizu , Motoma Kanaya , Satoshi Kano , Akihiro Homma , Kohsuke Kudo
{"title":"Diagnosis of thyroid cartilage invasion by laryngeal and hypopharyngeal cancers based on CT with deep learning","authors":"Yuki Takano ,&nbsp;Noriyuki Fujima ,&nbsp;Junichi Nakagawa ,&nbsp;Hiroki Dobashi ,&nbsp;Yukie Shimizu ,&nbsp;Motoma Kanaya ,&nbsp;Satoshi Kano ,&nbsp;Akihiro Homma ,&nbsp;Kohsuke Kudo","doi":"10.1016/j.ejrad.2025.112168","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To develop a convolutional neural network (CNN) model to diagnose thyroid cartilage invasion by laryngeal and hypopharyngeal cancers observed on computed tomography (CT) images and evaluate the model’s diagnostic performance.</div></div><div><h3>Methods</h3><div>We retrospectively analyzed 91 cases of laryngeal or hypopharyngeal cancer treated surgically at our hospital during the period April 2010 through May 2023, and we divided the cases into datasets for training (n = 61) and testing (n = 30). We reviewed the CT images and pathological diagnoses in all cases to determine the invasion positive- or negative-status as a ground truth. We trained the new CNN model to classify thyroid cartilage invasion-positive or −negative status from the pre-treatment axial CT images by transfer learning from Residual Network 101 (ResNet101), using the training dataset. We then used the test dataset to evaluate the model’s performance. Two radiologists, one with extensive head and neck imaging experience (senior reader) and the other with less experience (junior reader) reviewed the CT images of the test dataset to determine whether thyroid cartilage invasion was present.</div></div><div><h3>Results</h3><div>The following were obtained by the CNN model with the test dataset: area under the curve (AUC), 0.82; 90 % accuracy, 80 % sensitivity, and 95 % specificity. The CNN model showed a significant difference in AUCs compared to the junior reader (p = 0.035) but not the senior reader (p = 0.61).</div></div><div><h3>Conclusions</h3><div>The CNN-based diagnostic model can be a useful supportive tool for the assessment of thyroid cartilage invasion in patients with laryngeal or hypopharyngeal cancer.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"189 ","pages":"Article 112168"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X25002542","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

To develop a convolutional neural network (CNN) model to diagnose thyroid cartilage invasion by laryngeal and hypopharyngeal cancers observed on computed tomography (CT) images and evaluate the model’s diagnostic performance.

Methods

We retrospectively analyzed 91 cases of laryngeal or hypopharyngeal cancer treated surgically at our hospital during the period April 2010 through May 2023, and we divided the cases into datasets for training (n = 61) and testing (n = 30). We reviewed the CT images and pathological diagnoses in all cases to determine the invasion positive- or negative-status as a ground truth. We trained the new CNN model to classify thyroid cartilage invasion-positive or −negative status from the pre-treatment axial CT images by transfer learning from Residual Network 101 (ResNet101), using the training dataset. We then used the test dataset to evaluate the model’s performance. Two radiologists, one with extensive head and neck imaging experience (senior reader) and the other with less experience (junior reader) reviewed the CT images of the test dataset to determine whether thyroid cartilage invasion was present.

Results

The following were obtained by the CNN model with the test dataset: area under the curve (AUC), 0.82; 90 % accuracy, 80 % sensitivity, and 95 % specificity. The CNN model showed a significant difference in AUCs compared to the junior reader (p = 0.035) but not the senior reader (p = 0.61).

Conclusions

The CNN-based diagnostic model can be a useful supportive tool for the assessment of thyroid cartilage invasion in patients with laryngeal or hypopharyngeal cancer.
基于深度学习的CT诊断喉癌和下咽癌甲状腺软骨侵犯
目的建立基于卷积神经网络(CNN)的甲状腺软骨侵犯诊断模型,并评价该模型的诊断效果。方法回顾性分析我院2010年4月至2023年5月手术治疗的91例喉癌或下咽癌患者,并将病例分为训练组(n = 61)和检验组(n = 30)。我们回顾了所有病例的CT图像和病理诊断,以确定侵袭的阳性或阴性状态。我们使用训练数据集,通过残余网络101 (ResNet101)的迁移学习,训练新的CNN模型从预处理后的轴向CT图像中分类甲状腺软骨侵袭阳性或-阴性状态。然后我们使用测试数据集来评估模型的性能。两位放射科医生,一位具有丰富的头颈部成像经验(高级读者),另一位经验较少(初级读者)回顾了测试数据集的CT图像,以确定是否存在甲状腺软骨侵犯。结果使用测试数据集的CNN模型得到:曲线下面积(AUC), 0.82;90%的准确度,80%的灵敏度和95%的特异性。CNN模型的auc与初级阅读者相比有显著差异(p = 0.035),而与高级阅读者相比无显著差异(p = 0.61)。结论基于cnn的诊断模型可作为评估喉癌或下咽癌患者甲状腺软骨侵犯的辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.00%
发文量
398
审稿时长
42 days
期刊介绍: European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field. Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信