{"title":"In silico screening of peptide inhibitors targeting α-synuclein for Parkinson's disease","authors":"Gulsah Gul","doi":"10.1016/j.jmgm.2025.109079","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's disease affects cognitive, motor, and autonomic functions due to nervous system degeneration. Though no cure exists, medications and therapies can help alleviate symptoms, but their effectiveness diminishes as the disease progresses, ultimately increasing the need for alternative treatments. α-Synuclein has long been one of the main targets in addressing Parkinson's through drug design studies, but no drugs are yet approved against α-Synuclein aggregation. Therefore, this study aims to develop potential inhibitors of fibrillization by screening thousands of peptides in terms of their binding abilities via Molecular Docking and Molecular Dynamics simulations. Our results show that peptides with Lysine and Arginine at terminal groups result in higher binding affinities to the C-terminal domain. Among the heptapeptides examined, RWRRKRL shows the highest binding free energy to the protein while KKRHKWR exhibits superior stabilizing effect, interacting with both N- and C-terminal regions of α-Synuclein. The inhibitory potential of peptides on the fibrillar structure of protein varies with concentration, and RWRRKRL at 1:3 protein-peptide monomer ratio shows promise as an inhibitor by reducing the internal H-bonds of the protein and increasing RMSD values. These results reveal that short-chain peptides can be designed against α-Synuclein oligomerization offering a potential therapeutic approach for preventing Parkinson's.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"139 ","pages":"Article 109079"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325001391","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease affects cognitive, motor, and autonomic functions due to nervous system degeneration. Though no cure exists, medications and therapies can help alleviate symptoms, but their effectiveness diminishes as the disease progresses, ultimately increasing the need for alternative treatments. α-Synuclein has long been one of the main targets in addressing Parkinson's through drug design studies, but no drugs are yet approved against α-Synuclein aggregation. Therefore, this study aims to develop potential inhibitors of fibrillization by screening thousands of peptides in terms of their binding abilities via Molecular Docking and Molecular Dynamics simulations. Our results show that peptides with Lysine and Arginine at terminal groups result in higher binding affinities to the C-terminal domain. Among the heptapeptides examined, RWRRKRL shows the highest binding free energy to the protein while KKRHKWR exhibits superior stabilizing effect, interacting with both N- and C-terminal regions of α-Synuclein. The inhibitory potential of peptides on the fibrillar structure of protein varies with concentration, and RWRRKRL at 1:3 protein-peptide monomer ratio shows promise as an inhibitor by reducing the internal H-bonds of the protein and increasing RMSD values. These results reveal that short-chain peptides can be designed against α-Synuclein oligomerization offering a potential therapeutic approach for preventing Parkinson's.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.