Neutronic and thermal performance analysis of advanced cladding materials for ACP-100 SMR

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Md. Abidur Rahman Ishraq , Afroza Shelley , Md. Rashed Sardar
{"title":"Neutronic and thermal performance analysis of advanced cladding materials for ACP-100 SMR","authors":"Md. Abidur Rahman Ishraq ,&nbsp;Afroza Shelley ,&nbsp;Md. Rashed Sardar","doi":"10.1016/j.nucengdes.2025.114142","DOIUrl":null,"url":null,"abstract":"<div><div>This study analyzes the impact of various cladding materials: silicon carbide (SiC), Iron-Chromium-Aluminum Alloy (FeCrAl), Titanium-Molybdenum-Zirconium Alloy (TMZ), and Austenitic Stainless Steel (Alloy 33) and thicknesses (from 100 to 1000 µm) on the neutronic and thermal performance of the ACP-100 small modular reactor (SMR). Zircaloy is used as the reference material for comparison. Computational simulations using the Monte Carlo code SERPENT and nuclear data library ENDF/B-VII.1 indicate that SiC achieves the highest effective multiplication factor (keff) (1.3096), a 0.65 % increase over Zircaloy, while Alloy 33 exhibits the lowest keff (1.1724), a 9.90 % decrease at beginning of life (BOL) for thickness of 570 μm. As cladding thickness increases from 100 to 1000 µm, keff decreases by 4 % for SiC, 5.2 % for Zircaloy, and 18.2 % for Alloy 33 at BOL due to higher thermal neutron absorption. SiC sustains a cycle length of over 900 effective full power days (EFPDs) at 100 μm, achieving 912 EFPDs at 570 μm. In contrast, Alloy 33 shows poor neutron economy, with the cycle length dropping to 200 EFPDs at 1000 μm. SiC and TMZ demonstrate superior thermal conductivity (122.0 W/m·K and 110.3 W/m·K), reducing the fuel temperature by ∼10 K. While thicker cladding improves structural integrity, it compromises thermal efficiency. A thickness of 570 µm provides an optimal balance between performance and durability. SiC emerges as the most promising alternative cladding material for the ACP-100 SMR and further studies are recommended to assess its long-term behavior under reactor conditions.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"440 ","pages":"Article 114142"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002954932500319X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study analyzes the impact of various cladding materials: silicon carbide (SiC), Iron-Chromium-Aluminum Alloy (FeCrAl), Titanium-Molybdenum-Zirconium Alloy (TMZ), and Austenitic Stainless Steel (Alloy 33) and thicknesses (from 100 to 1000 µm) on the neutronic and thermal performance of the ACP-100 small modular reactor (SMR). Zircaloy is used as the reference material for comparison. Computational simulations using the Monte Carlo code SERPENT and nuclear data library ENDF/B-VII.1 indicate that SiC achieves the highest effective multiplication factor (keff) (1.3096), a 0.65 % increase over Zircaloy, while Alloy 33 exhibits the lowest keff (1.1724), a 9.90 % decrease at beginning of life (BOL) for thickness of 570 μm. As cladding thickness increases from 100 to 1000 µm, keff decreases by 4 % for SiC, 5.2 % for Zircaloy, and 18.2 % for Alloy 33 at BOL due to higher thermal neutron absorption. SiC sustains a cycle length of over 900 effective full power days (EFPDs) at 100 μm, achieving 912 EFPDs at 570 μm. In contrast, Alloy 33 shows poor neutron economy, with the cycle length dropping to 200 EFPDs at 1000 μm. SiC and TMZ demonstrate superior thermal conductivity (122.0 W/m·K and 110.3 W/m·K), reducing the fuel temperature by ∼10 K. While thicker cladding improves structural integrity, it compromises thermal efficiency. A thickness of 570 µm provides an optimal balance between performance and durability. SiC emerges as the most promising alternative cladding material for the ACP-100 SMR and further studies are recommended to assess its long-term behavior under reactor conditions.
ACP-100 SMR先进包层材料的中子和热性能分析
本研究分析了不同包层材料:碳化硅(SiC)、铁铬铝合金(FeCrAl)、钛钼锆合金(TMZ)和奥氏体不锈钢(Alloy 33)以及包层厚度(从100到1000µm)对ACP-100小型模块化反应堆(SMR)中子和热性能的影响。锆合金作为对照材料进行比较。使用蒙特卡罗代码SERPENT和核数据库ENDF/B-VII进行计算模拟。结果表明,SiC的有效倍增系数(keff)最高,为1.3096,比锆合金高0.65%;而合金33的有效倍增系数(keff)最低,为1.1724,在570 μm厚度下,有效倍增系数(BOL)降低9.90%。当包层厚度从100µm增加到1000µm时,由于较高的热中子吸收,SiC的keff降低了4%,锆合金的keff降低了5.2%,33合金的keff降低了18.2%。SiC在100 μm下的循环长度超过900个有效全功率天(efpd),在570 μm下可达到912个有效全功率天。相比之下,Alloy 33表现出较差的中子经济性,在1000 μm时循环长度降至200个efpd。SiC和TMZ表现出优异的导热性(122.0 W/m·K和110.3 W/m·K),将燃料温度降低约10 K。虽然较厚的包层提高了结构的完整性,但它损害了热效率。570µm的厚度在性能和耐用性之间达到了最佳平衡。SiC是ACP-100 SMR最有前途的替代包层材料,建议进一步研究以评估其在反应堆条件下的长期性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Engineering and Design
Nuclear Engineering and Design 工程技术-核科学技术
CiteScore
3.40
自引率
11.80%
发文量
377
审稿时长
5 months
期刊介绍: Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology. Fundamentals of Reactor Design include: • Thermal-Hydraulics and Core Physics • Safety Analysis, Risk Assessment (PSA) • Structural and Mechanical Engineering • Materials Science • Fuel Behavior and Design • Structural Plant Design • Engineering of Reactor Components • Experiments Aspects beyond fundamentals of Reactor Design covered: • Accident Mitigation Measures • Reactor Control Systems • Licensing Issues • Safeguard Engineering • Economy of Plants • Reprocessing / Waste Disposal • Applications of Nuclear Energy • Maintenance • Decommissioning Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信