Synthesis and electrochemical properties of nanostructured binder-free MgS–NiS as electrode material for supercapacitor applications

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Misbah Yousaf, I.A. Khan, A. Farid
{"title":"Synthesis and electrochemical properties of nanostructured binder-free MgS–NiS as electrode material for supercapacitor applications","authors":"Misbah Yousaf,&nbsp;I.A. Khan,&nbsp;A. Farid","doi":"10.1016/j.matchemphys.2025.130997","DOIUrl":null,"url":null,"abstract":"<div><div>The worldwide energy crisis imposes massive complications leading towards the growth of revolutionary devices, amid them the supercapacitors and batteries are supposed to be based on sustainable energy storage technology. The engineering of nanostructured materials with porous surface morphologies and binder-free synthesis of novel nanostructured electrode materials (EMs) is a better option for electrochemical energy sources. This study reports the synthesis of innovative binder-free MgS–NiS EMs (containing weight%: Ni = 45.6, S = 18.3 and Mg = 36.1 %) that acquires high energy density (42 Wh/kg), high power density (2048 W/kg), high specific capacities (4317 F/g at 0.5 mV/s), good capacity retention (96 %), high Coulombic efficiency (100 %) and excellent cyclic stability even after 20000 cycles via a simple home-made chemical vapor deposition technique. The structural and morphological properties resulted in surface area of 105.17 m<sup>2</sup>/g and pore size of 6.9 nm of MgS–NiS EMs that increases the active sites results in the increase of electrochemical performance. The redox reactions occurred in MgS–NiS EMs are controlled by diffusive controlled contribution at lower scan rates while such redox reactions are controlled by capacitive controlled contribution at higher scan rates. The achievement of smaller charge transfer resistance (negligibly small semicircle formation) indicates the high conductivity of MgS–NiS EMs that will enhance the inter-layer transference of electrons. Such enhanced electrochemical capabilities of MgS–NiS EMs hold considerable potential in functional practicability.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"343 ","pages":"Article 130997"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425006431","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The worldwide energy crisis imposes massive complications leading towards the growth of revolutionary devices, amid them the supercapacitors and batteries are supposed to be based on sustainable energy storage technology. The engineering of nanostructured materials with porous surface morphologies and binder-free synthesis of novel nanostructured electrode materials (EMs) is a better option for electrochemical energy sources. This study reports the synthesis of innovative binder-free MgS–NiS EMs (containing weight%: Ni = 45.6, S = 18.3 and Mg = 36.1 %) that acquires high energy density (42 Wh/kg), high power density (2048 W/kg), high specific capacities (4317 F/g at 0.5 mV/s), good capacity retention (96 %), high Coulombic efficiency (100 %) and excellent cyclic stability even after 20000 cycles via a simple home-made chemical vapor deposition technique. The structural and morphological properties resulted in surface area of 105.17 m2/g and pore size of 6.9 nm of MgS–NiS EMs that increases the active sites results in the increase of electrochemical performance. The redox reactions occurred in MgS–NiS EMs are controlled by diffusive controlled contribution at lower scan rates while such redox reactions are controlled by capacitive controlled contribution at higher scan rates. The achievement of smaller charge transfer resistance (negligibly small semicircle formation) indicates the high conductivity of MgS–NiS EMs that will enhance the inter-layer transference of electrons. Such enhanced electrochemical capabilities of MgS–NiS EMs hold considerable potential in functional practicability.
纳米结构无粘结剂MgS-NiS超级电容器电极材料的合成及其电化学性能
全球能源危机带来了巨大的复杂性,导致了革命性设备的发展,其中超级电容器和电池应该是基于可持续能源存储技术。具有多孔表面形貌的纳米结构材料工程和无粘结剂的新型纳米结构电极材料(EMs)的合成是电化学能源的更好选择。本研究通过简单的自制化学气相沉积技术合成了创新的无粘结剂MgS-NiS EMs(含重量%:Ni = 45.6%, S = 18.3, Mg = 36.1%),获得了高能量密度(42 Wh/kg),高功率密度(2048 W/kg),高比容量(在0.5 mV/ S时为4317 F/g),良好的容量保持率(96%),高库仑效率(100%)和优异的循环稳定性,即使经过20000次循环。结构和形态特性使得MgS-NiS EMs的比表面积达到105.17 m2/g,孔径达到6.9 nm,增加了活性位点,从而提高了电化学性能。在低扫描速率下,MgS-NiS薄膜中的氧化还原反应由扩散控制贡献控制,而在高扫描速率下,氧化还原反应由电容控制贡献控制。实现更小的电荷转移电阻(可忽略不计的小半圆形成)表明MgS-NiS EMs的高导电性将增强电子的层间转移。这种增强的MgS-NiS EMs在功能实用性方面具有相当大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信