Local well-posedness of the incompressible current-vortex sheet problems

IF 1.5 1区 数学 Q1 MATHEMATICS
Sicheng Liu , Zhouping Xin
{"title":"Local well-posedness of the incompressible current-vortex sheet problems","authors":"Sicheng Liu ,&nbsp;Zhouping Xin","doi":"10.1016/j.aim.2025.110339","DOIUrl":null,"url":null,"abstract":"<div><div>We prove the local well-posedness of the incompressible current-vortex sheet problems in standard Sobolev spaces under the surface tension or the Syrovatskij condition, which shows that both capillary forces and large tangential magnetic fields can stabilize the motion of current-vortex sheets. Furthermore, under the Syrovatskij condition, the vanishing surface tension limit is established for the motion of current-vortex sheets. These results hold without assuming the interface separating the two plasmas being a graph.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"475 ","pages":"Article 110339"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002373","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the local well-posedness of the incompressible current-vortex sheet problems in standard Sobolev spaces under the surface tension or the Syrovatskij condition, which shows that both capillary forces and large tangential magnetic fields can stabilize the motion of current-vortex sheets. Furthermore, under the Syrovatskij condition, the vanishing surface tension limit is established for the motion of current-vortex sheets. These results hold without assuming the interface separating the two plasmas being a graph.
不可压缩流-涡片问题的局部适定性
在表面张力和Syrovatskij条件下,证明了标准Sobolev空间中不可压缩电流-涡旋片问题的局部适定性,表明毛细力和大切向磁场都能稳定电流-涡旋片的运动。此外,在Syrovatskij条件下,建立了流涡片运动的表面张力消失极限。这些结果不需要假设分离两个等离子体的界面是一个图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信