Descriptive complexity of topological invariants

IF 0.6 2区 数学 Q2 LOGIC
Djamel Eddine Amir, Mathieu Hoyrup
{"title":"Descriptive complexity of topological invariants","authors":"Djamel Eddine Amir,&nbsp;Mathieu Hoyrup","doi":"10.1016/j.apal.2025.103611","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we investigate the descriptive complexity of topological invariants. Our main goal is to understand the expressive power of low complexity invariants, by investigating which spaces they can distinguish. We study the invariants in the first two levels of the Borel hierarchy. We develop techniques to establish whether two spaces can be separated by invariants in these levels. We show that they are sufficient to separate finite topological graphs. We finally identify the complexity of recognizing the line segment.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 8","pages":"Article 103611"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate the descriptive complexity of topological invariants. Our main goal is to understand the expressive power of low complexity invariants, by investigating which spaces they can distinguish. We study the invariants in the first two levels of the Borel hierarchy. We develop techniques to establish whether two spaces can be separated by invariants in these levels. We show that they are sufficient to separate finite topological graphs. We finally identify the complexity of recognizing the line segment.
拓扑不变量的描述复杂性
在本文中,我们研究了拓扑不变量的描述复杂性。我们的主要目标是通过研究它们可以区分哪些空间来理解低复杂度不变量的表达能力。我们研究了Borel层次结构的前两层中的不变量。我们开发的技术,以确定是否两个空间可以由不变量在这些水平分开。证明了它们足以分离有限拓扑图。最后指出了线段识别的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信