Exploring the energy storage potential of novel Molybdenum carbide heterostructures for metal-ion batteries

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
S. Koley, Chrislene Lionel
{"title":"Exploring the energy storage potential of novel Molybdenum carbide heterostructures for metal-ion batteries","authors":"S. Koley,&nbsp;Chrislene Lionel","doi":"10.1016/j.cocom.2025.e01053","DOIUrl":null,"url":null,"abstract":"<div><div>The development of advanced anode materials is crucial for next-generation energy storage technologies. The current study conceptualizes a novel energy storage material suitable for Li, Na and K ion battery. To explore a novel energy storage material derived from extensively studied MXenes, a potential heterostructure with an oxide is proposed to optimize the associated properties. A comprehensive investigation into the structural stability and electronic properties of this MoC–MoO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> heterostructure using density functional theory calculations reveals excellent dynamic stability, along with strong metallic characteristics. The heterostructure facilitates metal ion adsorption at interfacial sites, driven by van der Waals interactions. Binding energies of 2.1, 2.6, and 2.8 eV for Li, Na, and K ions, respectively, indicate strong ion interactions. The performance of the heterostructure as an anode material was systematically analyzed using the parameters such as theoretical capacity, open circuit voltage, and metallicity. Results show that Li ion intercalation demonstrates high theoretical capacity (500 mAh/g), high open circuit voltage (0.6 V) and low binding energy, highlighting its suitability for high-performance energy storage. Comparisons with current commercial anode materials this study demonstrate its superior performance, positioning the MoC–MoO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> heterostructure as a promising candidate for high-performance battery technologies.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01053"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325000528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The development of advanced anode materials is crucial for next-generation energy storage technologies. The current study conceptualizes a novel energy storage material suitable for Li, Na and K ion battery. To explore a novel energy storage material derived from extensively studied MXenes, a potential heterostructure with an oxide is proposed to optimize the associated properties. A comprehensive investigation into the structural stability and electronic properties of this MoC–MoO2 heterostructure using density functional theory calculations reveals excellent dynamic stability, along with strong metallic characteristics. The heterostructure facilitates metal ion adsorption at interfacial sites, driven by van der Waals interactions. Binding energies of 2.1, 2.6, and 2.8 eV for Li, Na, and K ions, respectively, indicate strong ion interactions. The performance of the heterostructure as an anode material was systematically analyzed using the parameters such as theoretical capacity, open circuit voltage, and metallicity. Results show that Li ion intercalation demonstrates high theoretical capacity (500 mAh/g), high open circuit voltage (0.6 V) and low binding energy, highlighting its suitability for high-performance energy storage. Comparisons with current commercial anode materials this study demonstrate its superior performance, positioning the MoC–MoO2 heterostructure as a promising candidate for high-performance battery technologies.
探索新型碳化钼异质结构在金属离子电池中的储能潜力
先进阳极材料的开发对下一代储能技术至关重要。目前的研究构想了一种适用于锂、钠和钾离子电池的新型储能材料。为了探索从广泛研究的MXenes中衍生出的新型储能材料,提出了一种带有氧化物的潜在异质结构来优化相关性能。利用密度泛函理论计算对MoC-MoO2异质结构的结构稳定性和电子性能进行了全面的研究,结果表明该MoC-MoO2异质结构具有良好的动态稳定性和较强的金属特性。在范德华相互作用的驱动下,异质结构有利于金属离子在界面位置的吸附。Li, Na和K离子的结合能分别为2.1,2.6和2.8 eV,表明离子相互作用强。采用理论容量、开路电压、金属丰度等参数对异质结构作为阳极材料的性能进行了系统分析。结果表明,Li离子嵌入具有高理论容量(500 mAh/g)、高开路电压(0.6 V)和低结合能等特点,适合高性能储能。与目前的商用阳极材料相比,该研究证明了其优越的性能,将MoC-MoO2异质结构定位为高性能电池技术的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信