{"title":"AITom: AI-guided cryo-electron tomography image analyses toolkit","authors":"Xueying Zhan , Xiangrui Zeng , Mostofa Rafid Uddin, Min Xu","doi":"10.1016/j.jsb.2025.108207","DOIUrl":null,"url":null,"abstract":"<div><div>Cryo-electron tomography (cryo-ET) is an essential tool in structural biology, uniquely capable of visualizing three-dimensional macromolecular complexes within their native cellular environments, thereby providing profound molecular-level insights. Despite its significant promise, cryo-ET faces persistent challenges in the systematic localization, identification, segmentation, and structural recovery of three-dimensional subcellular components, necessitating the development of efficient and accurate large-scale image analysis methods. In response to these complexities, this paper introduces <span>AITom</span>, an open-source artificial intelligence platform tailored for cryo-ET researchers. <span>AITom</span> integrates a comprehensive suite of public and proprietary algorithms, supporting both traditional template-based and template-free approaches, alongside state-of-the-art deep learning methodologies for cryo-ET data analysis. By incorporating diverse computational strategies, <span>AITom</span> enables researchers to more effectively tackle the complexities inherent in cryo-ET, facilitating precise analysis and interpretation of complex biological structures. Furthermore, <span>AITom</span> provides extensive tutorials for each analysis module, offering valuable guidance to users in utilizing its comprehensive functionalities.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 2","pages":"Article 108207"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000425","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cryo-electron tomography (cryo-ET) is an essential tool in structural biology, uniquely capable of visualizing three-dimensional macromolecular complexes within their native cellular environments, thereby providing profound molecular-level insights. Despite its significant promise, cryo-ET faces persistent challenges in the systematic localization, identification, segmentation, and structural recovery of three-dimensional subcellular components, necessitating the development of efficient and accurate large-scale image analysis methods. In response to these complexities, this paper introduces AITom, an open-source artificial intelligence platform tailored for cryo-ET researchers. AITom integrates a comprehensive suite of public and proprietary algorithms, supporting both traditional template-based and template-free approaches, alongside state-of-the-art deep learning methodologies for cryo-ET data analysis. By incorporating diverse computational strategies, AITom enables researchers to more effectively tackle the complexities inherent in cryo-ET, facilitating precise analysis and interpretation of complex biological structures. Furthermore, AITom provides extensive tutorials for each analysis module, offering valuable guidance to users in utilizing its comprehensive functionalities.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure