Dielectric and refractive index analysis of ethylene glycol monomethyl ether-methanol mixtures: Molecular interactions and machine learning based predictions

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
K.C. Vaghela , H.P. Vankar , K.N. Shah , V.A. Rana
{"title":"Dielectric and refractive index analysis of ethylene glycol monomethyl ether-methanol mixtures: Molecular interactions and machine learning based predictions","authors":"K.C. Vaghela ,&nbsp;H.P. Vankar ,&nbsp;K.N. Shah ,&nbsp;V.A. Rana","doi":"10.1016/j.molliq.2025.127756","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the dielectric and optical properties of ethylene glycol monomethyl ether (EGMME), methanol (MeOH), and their binary mixtures at various concentrations and temperatures (293.15 K, 303.15 K, 313.15 K, and 323.15 K). The static permittivity (ε<sub>0</sub>) and permittivity at optical frequency (ε<sub>∞</sub>, equivalent to the square of the refractive index) were measured to analyze molecular interactions. Key dielectric parameters, such as excess static permittivity (ε<sub>0</sub><sup>E</sup>), excess permittivity at optical frequency (ε<sub>∞</sub><sup>E</sup>), effective Kirkwood correlation factor (g<sup>eff</sup>), and Bruggeman factor (f<sub>B</sub>) were evaluated. Negative ε<sub>0</sub><sup>E</sup> values indicate reduced effective dipole moments, while positive ε<sub>∞</sub><sup>E</sup> suggests enhanced electronic polarization, driven by interactions, particularly hydrogen bonding. Mixing rules were used to predict static permittivity and refractive index, with accuracy assessed via root mean square deviation (RMSD). Machine learning (ML) models: Random Forest, Gradient Boosting, and Extreme Gradient Boosting were trained on experimental data to predict the real (εʹ) and imaginary (ε”) part of the dielectric function across 20 Hz to 2 MHz. The models demonstrated high predictive accuracy, reducing experimental dependence and enabling efficient dielectric characterization. This study provides insights into EGMME-MeOH molecular interactions and presents a robust ML framework for predicting dielectric properties, with potential applications requiring controlled dielectric properties like coatings, pharmaceuticals, and material science.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"430 ","pages":"Article 127756"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016773222500933X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the dielectric and optical properties of ethylene glycol monomethyl ether (EGMME), methanol (MeOH), and their binary mixtures at various concentrations and temperatures (293.15 K, 303.15 K, 313.15 K, and 323.15 K). The static permittivity (ε0) and permittivity at optical frequency (ε, equivalent to the square of the refractive index) were measured to analyze molecular interactions. Key dielectric parameters, such as excess static permittivity (ε0E), excess permittivity at optical frequency (εE), effective Kirkwood correlation factor (geff), and Bruggeman factor (fB) were evaluated. Negative ε0E values indicate reduced effective dipole moments, while positive εE suggests enhanced electronic polarization, driven by interactions, particularly hydrogen bonding. Mixing rules were used to predict static permittivity and refractive index, with accuracy assessed via root mean square deviation (RMSD). Machine learning (ML) models: Random Forest, Gradient Boosting, and Extreme Gradient Boosting were trained on experimental data to predict the real (εʹ) and imaginary (ε”) part of the dielectric function across 20 Hz to 2 MHz. The models demonstrated high predictive accuracy, reducing experimental dependence and enabling efficient dielectric characterization. This study provides insights into EGMME-MeOH molecular interactions and presents a robust ML framework for predicting dielectric properties, with potential applications requiring controlled dielectric properties like coatings, pharmaceuticals, and material science.
乙二醇单甲醚-甲醇混合物的介电和折射率分析:分子相互作用和基于机器学习的预测
本文研究了乙二醇单甲醚(EGMME)、甲醇(MeOH)及其二元混合物在不同浓度和温度(293.15 K、303.15 K、313.15 K和323.15 K)下的介电和光学性质。测量了静态介电常数(ε0)和光学频率介电常数(ε∞,相当于折射率的平方)来分析分子间的相互作用。评估了介质的关键参数,如过量静态介电常数(ε 0e)、过量光频介电常数(ε∞E)、有效Kirkwood相关因子(geff)和Bruggeman因子(fB)。ε 0e值为负表明有效偶极矩减小,而ε∞E值为正表明电子极化增强,这是由相互作用,特别是氢键作用驱动的。混合规则用于预测静态介电常数和折射率,准确度通过均方根偏差(RMSD)评估。机器学习(ML)模型:随机森林(Random Forest)、梯度增强(Gradient Boosting)和极端梯度增强(Extreme Gradient Boosting)在实验数据上进行训练,以预测20 Hz至2 MHz范围内介电函数的实(ε′)和虚(ε′)部分。该模型具有较高的预测精度,减少了对实验的依赖,并实现了高效的电介质表征。这项研究提供了对EGMME-MeOH分子相互作用的见解,并提出了一个强大的机器学习框架,用于预测介电性能,具有潜在的应用,需要控制介电性能,如涂料,制药和材料科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信