An effective evolutionary algorithm for packing rectangles into a fixed size circular container

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Xiangjing Lai, Lei Wang, Jin-Kao Hao, Qinghua Wu
{"title":"An effective evolutionary algorithm for packing rectangles into a fixed size circular container","authors":"Xiangjing Lai, Lei Wang, Jin-Kao Hao, Qinghua Wu","doi":"10.1016/j.ejor.2025.04.044","DOIUrl":null,"url":null,"abstract":"We study the general problem of orthogonally packing rectangles in a fixed size circular container. This is a computationally challenging combinatorial optimization problem with important real-world applications and has recently received much attention from the operations research community. We propose an effective evolutionary algorithm for four variants of the problem, which integrates an improved decoding procedure and several dedicated search operators for population initialization and new solution generation. Computational results on 108 popular benchmark instances show that the proposed algorithm advances the state of the art in practically solving these four variants of the problem by finding 53 new best solutions (26 for the variants of maximizing the area of the packed items and 27 for the variants of maximizing the number of the packed items). We perform experiments to verify the design of key algorithmic components.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"17 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.04.044","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We study the general problem of orthogonally packing rectangles in a fixed size circular container. This is a computationally challenging combinatorial optimization problem with important real-world applications and has recently received much attention from the operations research community. We propose an effective evolutionary algorithm for four variants of the problem, which integrates an improved decoding procedure and several dedicated search operators for population initialization and new solution generation. Computational results on 108 popular benchmark instances show that the proposed algorithm advances the state of the art in practically solving these four variants of the problem by finding 53 new best solutions (26 for the variants of maximizing the area of the packed items and 27 for the variants of maximizing the number of the packed items). We perform experiments to verify the design of key algorithmic components.
一种将矩形装箱成固定尺寸圆形容器的有效进化算法
研究了固定尺寸圆形容器中矩形正交填充的一般问题。这是一个具有计算挑战性的组合优化问题,具有重要的现实应用,最近受到运筹学社区的广泛关注。针对这四种问题,我们提出了一种有效的进化算法,该算法集成了改进的解码过程和用于种群初始化和新解生成的专用搜索算子。108个常用基准实例的计算结果表明,该算法通过找到53个新的最佳解(26个用于最大化包装物品面积的变体,27个用于最大化包装物品数量的变体),在实际解决这四种问题方面取得了先进的进展。我们通过实验验证了关键算法组件的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信