The Pore-Branching Channels of Porous Anodic Alumina Formed in an Alkaline Solution of Potassium Phosphate

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Xi Chen, Jiahao Wang, Xinyu Pang, Jiaying Hu, Yi Zhuang, Hao Qiu, Ye Song, Xufei Zhu
{"title":"The Pore-Branching Channels of Porous Anodic Alumina Formed in an Alkaline Solution of Potassium Phosphate","authors":"Xi Chen, Jiahao Wang, Xinyu Pang, Jiaying Hu, Yi Zhuang, Hao Qiu, Ye Song, Xufei Zhu","doi":"10.1021/acs.jpcc.5c01312","DOIUrl":null,"url":null,"abstract":"In this study, the anodizing processes of aluminum in oxalic acid solution (pH ≈0.98) and alkaline aqueous solution (pH ≈12.86) were compared. The channels of porous anodic alumina (PAA) obtained from the two electrolytes were characterized by FESEM. The pore-branching channels of PAA were obtained by anodizing aluminum in an alkaline aqueous solution of potassium phosphate. The pore-branching channels of PAA cannot be clarified by the acidic field-assisted dissolution theory (FADT). In this article, the formation mechanism of PAA under alkaline conditions is explained by the oxide viscous flow model around the oxygen bubble model and electronic current theory. The pore diameter of porous anodic alumina formed in potassium phosphate electrolyte (≈90 nm) is larger than that formed in oxalic acid conditions (≈25 nm) because there are two oxygen bubbles at the large bottom, which is conducive to the formation of pore-branching channels.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"21 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c01312","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the anodizing processes of aluminum in oxalic acid solution (pH ≈0.98) and alkaline aqueous solution (pH ≈12.86) were compared. The channels of porous anodic alumina (PAA) obtained from the two electrolytes were characterized by FESEM. The pore-branching channels of PAA were obtained by anodizing aluminum in an alkaline aqueous solution of potassium phosphate. The pore-branching channels of PAA cannot be clarified by the acidic field-assisted dissolution theory (FADT). In this article, the formation mechanism of PAA under alkaline conditions is explained by the oxide viscous flow model around the oxygen bubble model and electronic current theory. The pore diameter of porous anodic alumina formed in potassium phosphate electrolyte (≈90 nm) is larger than that formed in oxalic acid conditions (≈25 nm) because there are two oxygen bubbles at the large bottom, which is conducive to the formation of pore-branching channels.

Abstract Image

多孔阳极氧化铝在碱性磷酸钾溶液中形成的孔分支通道
本研究比较了铝在草酸溶液(pH≈0.98)和碱性水溶液(pH≈12.86)中的阳极氧化过程。用FESEM对两种电解质制备的多孔阳极氧化铝(PAA)通道进行了表征。在磷酸钾碱性水溶液中阳极氧化铝,得到了PAA的多孔分支通道。酸性场辅助溶解理论(FADT)不能解释PAA的孔分支通道。本文通过氧泡周围的氧化物粘性流动模型和电流理论解释了PAA在碱性条件下的形成机理。在磷酸钾电解液中形成的多孔阳极氧化铝孔径(≈90 nm)比在草酸条件下形成的多孔阳极氧化铝孔径(≈25 nm)要大,因为在大的底部有两个氧泡,有利于形成分孔通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信