He Zhu, Jun Bai, Na Li, Xiaoxiao Li, Dianbo Liu, David L. Buckeridge, Yue Li
{"title":"FedWeight: mitigating covariate shift of federated learning on electronic health records data through patients re-weighting","authors":"He Zhu, Jun Bai, Na Li, Xiaoxiao Li, Dianbo Liu, David L. Buckeridge, Yue Li","doi":"10.1038/s41746-025-01661-8","DOIUrl":null,"url":null,"abstract":"<p>Federated learning (FL) enables collaborative analysis of decentralized medical data while preserving patient privacy. However, the covariate shift from demographic and clinical differences can reduce model generalizability. We propose FedWeight, a novel FL framework that mitigates covariate shift by reweighting patient data from the source sites using density estimators, allowing the trained model to better align with the distribution of the target site. To support unsupervised applications, we introduce FedWeight ETM, a federated embedded topic model. We evaluated FedWeight in cross-site FL on the eICU dataset and cross-dataset FL between eICU and MIMIC III. FedWeight consistently outperforms standard FL baselines in predicting ICU mortality, ventilator use, sepsis diagnosis, and length of stay. SHAP-based interpretation and ETM-based topic modeling reveal improved identification of clinically relevant characteristics and disease topics associated with ICU readmission.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"205 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01661-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning (FL) enables collaborative analysis of decentralized medical data while preserving patient privacy. However, the covariate shift from demographic and clinical differences can reduce model generalizability. We propose FedWeight, a novel FL framework that mitigates covariate shift by reweighting patient data from the source sites using density estimators, allowing the trained model to better align with the distribution of the target site. To support unsupervised applications, we introduce FedWeight ETM, a federated embedded topic model. We evaluated FedWeight in cross-site FL on the eICU dataset and cross-dataset FL between eICU and MIMIC III. FedWeight consistently outperforms standard FL baselines in predicting ICU mortality, ventilator use, sepsis diagnosis, and length of stay. SHAP-based interpretation and ETM-based topic modeling reveal improved identification of clinically relevant characteristics and disease topics associated with ICU readmission.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.