The DRAGON benchmark for clinical NLP

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Joeran S. Bosma, Koen Dercksen, Luc Builtjes, Romain André, Christian Roest, Stefan J. Fransen, Constant R. Noordman, Mar Navarro-Padilla, Judith Lefkes, Natália Alves, Max J. J. de Grauw, Leander van Eekelen, Joey M. A. Spronck, Megan Schuurmans, Bram de Wilde, Ward Hendrix, Witali Aswolinskiy, Anindo Saha, Jasper J. Twilt, Daan Geijs, Jeroen Veltman, Derya Yakar, Maarten de Rooij, Francesco Ciompi, Alessa Hering, Jeroen Geerdink, Henkjan Huisman
{"title":"The DRAGON benchmark for clinical NLP","authors":"Joeran S. Bosma, Koen Dercksen, Luc Builtjes, Romain André, Christian Roest, Stefan J. Fransen, Constant R. Noordman, Mar Navarro-Padilla, Judith Lefkes, Natália Alves, Max J. J. de Grauw, Leander van Eekelen, Joey M. A. Spronck, Megan Schuurmans, Bram de Wilde, Ward Hendrix, Witali Aswolinskiy, Anindo Saha, Jasper J. Twilt, Daan Geijs, Jeroen Veltman, Derya Yakar, Maarten de Rooij, Francesco Ciompi, Alessa Hering, Jeroen Geerdink, Henkjan Huisman","doi":"10.1038/s41746-025-01626-x","DOIUrl":null,"url":null,"abstract":"<p>Artificial Intelligence can mitigate the global shortage of medical diagnostic personnel but requires large-scale annotated datasets to train clinical algorithms. Natural Language Processing (NLP), including Large Language Models (LLMs), shows great potential for annotating clinical data to facilitate algorithm development but remains underexplored due to a lack of public benchmarks. This study introduces the DRAGON challenge, a benchmark for clinical NLP with 28 tasks and 28,824 annotated medical reports from five Dutch care centers. It facilitates automated, large-scale, cost-effective data annotation. Foundational LLMs were pretrained using four million clinical reports from a sixth Dutch care center. Evaluations showed the superiority of domain-specific pretraining (DRAGON 2025 test score of 0.770) and mixed-domain pretraining (0.756), compared to general-domain pretraining (0.734, <i>p</i> &lt; 0.005). While strong performance was achieved on 18/28 tasks, performance was subpar on 10/28 tasks, uncovering where innovations are needed. Benchmark, code, and foundational LLMs are publicly available.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"57 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01626-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence can mitigate the global shortage of medical diagnostic personnel but requires large-scale annotated datasets to train clinical algorithms. Natural Language Processing (NLP), including Large Language Models (LLMs), shows great potential for annotating clinical data to facilitate algorithm development but remains underexplored due to a lack of public benchmarks. This study introduces the DRAGON challenge, a benchmark for clinical NLP with 28 tasks and 28,824 annotated medical reports from five Dutch care centers. It facilitates automated, large-scale, cost-effective data annotation. Foundational LLMs were pretrained using four million clinical reports from a sixth Dutch care center. Evaluations showed the superiority of domain-specific pretraining (DRAGON 2025 test score of 0.770) and mixed-domain pretraining (0.756), compared to general-domain pretraining (0.734, p < 0.005). While strong performance was achieved on 18/28 tasks, performance was subpar on 10/28 tasks, uncovering where innovations are needed. Benchmark, code, and foundational LLMs are publicly available.

Abstract Image

临床NLP的DRAGON基准
人工智能可以缓解全球医疗诊断人员的短缺,但需要大规模的注释数据集来训练临床算法。自然语言处理(NLP),包括大型语言模型(llm),在注释临床数据以促进算法开发方面显示出巨大的潜力,但由于缺乏公共基准,仍未得到充分开发。这项研究引入了DRAGON挑战,这是一个临床NLP的基准,有28个任务和来自五个荷兰护理中心的28,824份注释医疗报告。它促进了自动化、大规模、经济高效的数据注释。基础法学硕士使用来自荷兰第六护理中心的400万份临床报告进行预训练。评估结果显示,特定领域预训练(DRAGON 2025测试分数为0.770)和混合领域预训练(0.756)优于通用领域预训练(0.734,p < 0.005)。虽然在18/28任务中取得了出色的表现,但在10/28任务中表现欠佳,这揭示了需要创新的地方。基准测试、代码和基础法学硕士都是公开可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信