Robust solutions of nonlinear least squares problems via min-max optimization

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaojun Chen, C T Kelley
{"title":"Robust solutions of nonlinear least squares problems via min-max optimization","authors":"Xiaojun Chen, C T Kelley","doi":"10.1093/imanum/draf026","DOIUrl":null,"url":null,"abstract":"This paper considers robust solutions to a class of nonlinear least squares problems using a min-max optimization approach. We give an explicit formula for the value function of the inner maximization problem and show the existence of global minimax points. We establish error bounds from any solution of the nonlinear least squares problem to the solution set of the robust nonlinear least squares problem. Moreover, we propose a smoothing method for finding a global minimax point of the min-max problem by using the formula and show that finding an $\\varepsilon $ minimax critical point of the min-max problem needs at most $O(\\varepsilon ^{-2} +\\delta ^{2} \\varepsilon ^{-3})$ evaluations of the function value and gradients of the objective function, where $\\delta $ is the tolerance of the noise. Numerical results of integral equations with uncertain data demonstrate the robustness of solutions of our approach and unstable behavior of least squares solutions disregarding uncertainties in the data.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"96 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf026","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers robust solutions to a class of nonlinear least squares problems using a min-max optimization approach. We give an explicit formula for the value function of the inner maximization problem and show the existence of global minimax points. We establish error bounds from any solution of the nonlinear least squares problem to the solution set of the robust nonlinear least squares problem. Moreover, we propose a smoothing method for finding a global minimax point of the min-max problem by using the formula and show that finding an $\varepsilon $ minimax critical point of the min-max problem needs at most $O(\varepsilon ^{-2} +\delta ^{2} \varepsilon ^{-3})$ evaluations of the function value and gradients of the objective function, where $\delta $ is the tolerance of the noise. Numerical results of integral equations with uncertain data demonstrate the robustness of solutions of our approach and unstable behavior of least squares solutions disregarding uncertainties in the data.
非线性最小二乘问题的最小最大优化鲁棒解
本文研究了一类非线性最小二乘问题的鲁棒解。给出了内极大值问题的值函数的显式表达式,并证明了全局极大极小点的存在性。建立了非线性最小二乘问题的任意解到鲁棒非线性最小二乘问题解集的误差界。此外,我们提出了一种利用公式寻找最小最大问题的全局极小极大点的平滑方法,并表明寻找最小最大问题的$\varepsilon $极小极大临界点最多需要对目标函数的函数值和梯度进行$O(\varepsilon ^{-2} +\delta ^{2} \varepsilon ^{-3})$次评估,其中$\delta $为噪声容限。具有不确定数据的积分方程的数值结果证明了该方法解的鲁棒性和不考虑数据不确定性的最小二乘解的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信