Weixing Chen;Yang Liu;Ce Wang;Jiarui Zhu;Guanbin Li;Cheng-Lin Liu;Liang Lin
{"title":"Cross-Modal Causal Representation Learning for Radiology Report Generation","authors":"Weixing Chen;Yang Liu;Ce Wang;Jiarui Zhu;Guanbin Li;Cheng-Lin Liu;Liang Lin","doi":"10.1109/TIP.2025.3568746","DOIUrl":null,"url":null,"abstract":"Radiology Report Generation (RRG) is essential for computer-aided diagnosis and medication guidance, which can relieve the heavy burden of radiologists by automatically generating the corresponding radiology reports according to the given radiology image. However, generating accurate lesion descriptions remains challenging due to spurious correlations from visual-linguistic biases and inherent limitations of radiological imaging, such as low resolution and noise interference. To address these issues, we propose a two-stage framework named Cross-Modal Causal Representation Learning (CMCRL), consisting of the Radiological Cross-modal Alignment and Reconstruction Enhanced (RadCARE) pre-training and the Visual-Linguistic Causal Intervention (VLCI) fine-tuning. In the pre-training stage, RadCARE introduces a degradation-aware masked image restoration strategy tailored for radiological images, which reconstructs high-resolution patches from low-resolution inputs to mitigate noise and detail loss. Combined with a multiway architecture and four adaptive training strategies (e.g., text postfix generation with degraded images and text prefixes), RadCARE establishes robust cross-modal correlations even with incomplete data. In the VLCI phase, we deploy causal front-door intervention through two modules: the Visual Deconfounding Module (VDM) disentangles local-global features without fine-grained annotations, while the Linguistic Deconfounding Module (LDM) eliminates context bias without external terminology databases. Experiments on IU-Xray and MIMIC-CXR show that our CMCRL pipeline significantly outperforms state-of-the-art methods, with ablation studies confirming the necessity of both stages. Code and models are available at <uri>https://github.com/WissingChen/CMCRL</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"2970-2985"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11005686/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Radiology Report Generation (RRG) is essential for computer-aided diagnosis and medication guidance, which can relieve the heavy burden of radiologists by automatically generating the corresponding radiology reports according to the given radiology image. However, generating accurate lesion descriptions remains challenging due to spurious correlations from visual-linguistic biases and inherent limitations of radiological imaging, such as low resolution and noise interference. To address these issues, we propose a two-stage framework named Cross-Modal Causal Representation Learning (CMCRL), consisting of the Radiological Cross-modal Alignment and Reconstruction Enhanced (RadCARE) pre-training and the Visual-Linguistic Causal Intervention (VLCI) fine-tuning. In the pre-training stage, RadCARE introduces a degradation-aware masked image restoration strategy tailored for radiological images, which reconstructs high-resolution patches from low-resolution inputs to mitigate noise and detail loss. Combined with a multiway architecture and four adaptive training strategies (e.g., text postfix generation with degraded images and text prefixes), RadCARE establishes robust cross-modal correlations even with incomplete data. In the VLCI phase, we deploy causal front-door intervention through two modules: the Visual Deconfounding Module (VDM) disentangles local-global features without fine-grained annotations, while the Linguistic Deconfounding Module (LDM) eliminates context bias without external terminology databases. Experiments on IU-Xray and MIMIC-CXR show that our CMCRL pipeline significantly outperforms state-of-the-art methods, with ablation studies confirming the necessity of both stages. Code and models are available at https://github.com/WissingChen/CMCRL.