Elina Fuchs, Fiona Kirk, Eric Madge, Chaitanya Paranjape, Ekkehard Peik, Gilad Perez, Wolfram Ratzinger, Johannes Tiedau
{"title":"Searching for Dark Matter with the Th229 Nuclear Lineshape from Laser Spectroscopy","authors":"Elina Fuchs, Fiona Kirk, Eric Madge, Chaitanya Paranjape, Ekkehard Peik, Gilad Perez, Wolfram Ratzinger, Johannes Tiedau","doi":"10.1103/physrevx.15.021055","DOIUrl":null,"url":null,"abstract":"The recent laser excitation of the low-lying Th</a:mi></a:mrow>229</a:mn></a:mmultiscripts></a:mrow></a:math> isomer transition has started a revolution in ultralight dark matter searches. The enhanced sensitivity of this transition to the large class of dark matter models dominantly coupling to quarks and gluons will ultimately allow us to probe coupling strengths 8 orders of magnitude smaller than the current bounds from optical atomic clocks, which are mainly sensitive to dark matter couplings to electrons and photons. We argue that, with increasing precision, observations of the <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mmultiscripts><c:mrow><c:mi>Th</c:mi></c:mrow><c:mprescripts/><c:none/><c:mn>229</c:mn></c:mmultiscripts></c:mrow></c:math> excitation spectrum will soon give the world-leading constraints. Using data from the pioneering laser excitation of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mmultiscripts><e:mrow><e:mi>Th</e:mi></e:mrow><e:mprescripts/><e:none/><e:mn>229</e:mn></e:mmultiscripts></e:mrow></e:math> by Tiedau [], we present a first dark matter search in the excitation spectrum. While the exclusion limits of our detailed study of the lineshape are still below the sensitivity of currently operating clock experiments, we project the measurement of Zhang [] to surpass it. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"29 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021055","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The recent laser excitation of the low-lying Th229 isomer transition has started a revolution in ultralight dark matter searches. The enhanced sensitivity of this transition to the large class of dark matter models dominantly coupling to quarks and gluons will ultimately allow us to probe coupling strengths 8 orders of magnitude smaller than the current bounds from optical atomic clocks, which are mainly sensitive to dark matter couplings to electrons and photons. We argue that, with increasing precision, observations of the Th229 excitation spectrum will soon give the world-leading constraints. Using data from the pioneering laser excitation of Th229 by Tiedau [], we present a first dark matter search in the excitation spectrum. While the exclusion limits of our detailed study of the lineshape are still below the sensitivity of currently operating clock experiments, we project the measurement of Zhang [] to surpass it. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.