Constraining the curvature-induced quantum gravity scales via gamma-ray bursts

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
D.D. Ofengeim and T. Piran
{"title":"Constraining the curvature-induced quantum gravity scales via gamma-ray bursts","authors":"D.D. Ofengeim and T. Piran","doi":"10.1088/1475-7516/2025/05/041","DOIUrl":null,"url":null,"abstract":"We constrain the parameters that govern curvature-induced quantum gravity time-of-flight (TOF) effects. These TOF delays, which occur due to modified dispersion relations of particles in the vacuum, could be a phenomenological signature of quantum gravity. Gamma-ray bursts (GRBs), short, high-energy events from distant galaxies, offer a unique opportunity to impose observational limits on TOF delays and, by extension, on the energy scales of quantum gravity. Using the standard Jacob-Piran relation, which assumes a locally-flat spacetime, the analysis of quantum gravity-induced TOF effects establishes a lower limit of approximately 10 EPl on the energy scale of these effects. However, curvature-induced quantum gravity effects may introduce additional contributions. From current GRB observations, we find that, at a 95% credibility level, in the symmetry-deformed scenario, curvature-induced TOF effects may only arise at energies above 0.04 EPl. If we consider only curvature-induced effects, this limit is an order of magnitude stronger. Observing more GRBs at different redshifts could improve the constraints on the curvature-induced QG phenomena. However, given the capabilities of current telescopes and the current understanding of GRBs, it is unlikely that these constraints will be significantly extended beyond the present level.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"130 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/041","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We constrain the parameters that govern curvature-induced quantum gravity time-of-flight (TOF) effects. These TOF delays, which occur due to modified dispersion relations of particles in the vacuum, could be a phenomenological signature of quantum gravity. Gamma-ray bursts (GRBs), short, high-energy events from distant galaxies, offer a unique opportunity to impose observational limits on TOF delays and, by extension, on the energy scales of quantum gravity. Using the standard Jacob-Piran relation, which assumes a locally-flat spacetime, the analysis of quantum gravity-induced TOF effects establishes a lower limit of approximately 10 EPl on the energy scale of these effects. However, curvature-induced quantum gravity effects may introduce additional contributions. From current GRB observations, we find that, at a 95% credibility level, in the symmetry-deformed scenario, curvature-induced TOF effects may only arise at energies above 0.04 EPl. If we consider only curvature-induced effects, this limit is an order of magnitude stronger. Observing more GRBs at different redshifts could improve the constraints on the curvature-induced QG phenomena. However, given the capabilities of current telescopes and the current understanding of GRBs, it is unlikely that these constraints will be significantly extended beyond the present level.
通过伽马射线暴约束曲率诱导的量子引力尺度
我们约束了控制曲率诱导量子引力飞行时间效应的参数。由于真空中粒子色散关系的改变而产生的TOF延迟可能是量子引力的一种现象学特征。伽马射线暴(GRBs)是来自遥远星系的短暂高能事件,它提供了一个独特的机会,可以对TOF延迟以及量子引力的能量尺度施加观测限制。利用假定局域平坦时空的标准雅各布-皮兰关系,对量子引力诱导的TOF效应进行了分析,确定了这些效应能量尺度上的下限约为10 EPl。然而,曲率诱导的量子引力效应可能会引入额外的贡献。从目前的GRB观测中,我们发现,在95%的可信度水平上,在对称变形的情况下,曲率诱导的TOF效应可能只出现在能量高于0.04 EPl的情况下。如果我们只考虑曲率引起的效应,这个极限就强了一个数量级。在不同的红移观测更多的grb可以改善对曲率诱导QG现象的限制。然而,考虑到目前望远镜的能力和对grb的理解,这些限制不太可能大大超出目前的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信