Léo Monbroussou, Eliott Z. Mamon, Jonas Landman, Alex B. Grilo, Romain Kukla, Elham Kashefi
{"title":"Trainability and Expressivity of Hamming-Weight Preserving Quantum Circuits for Machine Learning","authors":"Léo Monbroussou, Eliott Z. Mamon, Jonas Landman, Alex B. Grilo, Romain Kukla, Elham Kashefi","doi":"10.22331/q-2025-05-15-1745","DOIUrl":null,"url":null,"abstract":"Quantum machine learning (QML) has become a promising area for real world applications of quantum computers, but near-term methods and their scalability are still important research topics. In this context, we analyze the trainability and controllability of specific Hamming weight preserving variational quantum circuits (VQCs). These circuits use qubit gates that preserve subspaces of the Hilbert space, spanned by basis states with fixed Hamming weight $k$. In this work, we first design and prove the feasibility of new heuristic data loaders, performing quantum amplitude encoding of $\\binom{n}{k}$-dimensional vectors by training an $n$-qubit quantum circuit. These data loaders are obtained using controllability arguments, by checking the Quantum Fisher Information Matrix (QFIM)'s rank. Second, we provide a theoretical justification for the fact that the rank of the QFIM of any VQC state is almost-everywhere constant, which is of separate interest. Lastly, we analyze the trainability of Hamming weight preserving circuits, and show that the variance of the $l_2$ cost function gradient is bounded according to the dimension $\\binom{n}{k}$ of the subspace. This proves conditions of existence/lack of Barren Plateaus for these circuits, and highlights a setting where a recent conjecture on the link between controllability and trainability of variational quantum circuits does not apply.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"96 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-15-1745","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum machine learning (QML) has become a promising area for real world applications of quantum computers, but near-term methods and their scalability are still important research topics. In this context, we analyze the trainability and controllability of specific Hamming weight preserving variational quantum circuits (VQCs). These circuits use qubit gates that preserve subspaces of the Hilbert space, spanned by basis states with fixed Hamming weight $k$. In this work, we first design and prove the feasibility of new heuristic data loaders, performing quantum amplitude encoding of $\binom{n}{k}$-dimensional vectors by training an $n$-qubit quantum circuit. These data loaders are obtained using controllability arguments, by checking the Quantum Fisher Information Matrix (QFIM)'s rank. Second, we provide a theoretical justification for the fact that the rank of the QFIM of any VQC state is almost-everywhere constant, which is of separate interest. Lastly, we analyze the trainability of Hamming weight preserving circuits, and show that the variance of the $l_2$ cost function gradient is bounded according to the dimension $\binom{n}{k}$ of the subspace. This proves conditions of existence/lack of Barren Plateaus for these circuits, and highlights a setting where a recent conjecture on the link between controllability and trainability of variational quantum circuits does not apply.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.