Kavindu Jayasooriya, Sasha P Jenner, Pasindu Marasinghe, Udith Senanayake, Hassaan Saadat, David Taubman, Roshan Ragel, Hasindu Gamaarachchi, Ira W Deveson
{"title":"A new compression strategy to reduce the size of nanopore sequencing data","authors":"Kavindu Jayasooriya, Sasha P Jenner, Pasindu Marasinghe, Udith Senanayake, Hassaan Saadat, David Taubman, Roshan Ragel, Hasindu Gamaarachchi, Ira W Deveson","doi":"10.1101/gr.280090.124","DOIUrl":null,"url":null,"abstract":"Nanopore sequencing is an increasingly central tool for genomics. Despite rapid advances in the field, large data volumes and computational bottlenecks continue to pose major challenges. Here we introduce ex-zd, a new data compression strategy that helps address the large size of raw signal data generated during nanopore experiments. Ex-zd encompasses both a lossless compression method, which modestly outperforms all current methods for nanopore signal data compression, and a 'lossy' method, which can be used to achieve dramatic additional savings. The latter component works by reducing the number of bits used to encode signal data. We show that the three least significant bits in signal data generated on instruments from Oxford Nanopore Technologies (ONT) predominantly encode noise. Their removal reduces file sizes by half without impacting downstream analyses, including basecalling and detection of modified DNA or RNA bases. Ex-zd compression saves hundreds of gigabytes on a single ONT sequencing experiment, thereby increasing the scalability, portability, and accessibility of nanopore sequencing.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"54 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.280090.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanopore sequencing is an increasingly central tool for genomics. Despite rapid advances in the field, large data volumes and computational bottlenecks continue to pose major challenges. Here we introduce ex-zd, a new data compression strategy that helps address the large size of raw signal data generated during nanopore experiments. Ex-zd encompasses both a lossless compression method, which modestly outperforms all current methods for nanopore signal data compression, and a 'lossy' method, which can be used to achieve dramatic additional savings. The latter component works by reducing the number of bits used to encode signal data. We show that the three least significant bits in signal data generated on instruments from Oxford Nanopore Technologies (ONT) predominantly encode noise. Their removal reduces file sizes by half without impacting downstream analyses, including basecalling and detection of modified DNA or RNA bases. Ex-zd compression saves hundreds of gigabytes on a single ONT sequencing experiment, thereby increasing the scalability, portability, and accessibility of nanopore sequencing.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.