{"title":"Substrate charge transfer drives the absorption site of metal-phthalocyanines and porphyrins on coinage metal surfaces","authors":"Silvia Carlotto, Iulia Cojocariu, Vitaliy Feyer, Luca Schio, Luca Floreano, Maurizio Casarin","doi":"10.1039/d5cp01576f","DOIUrl":null,"url":null,"abstract":"The frontier electronic structure of tetraphenylporphyrinato (TPP<small><sup>2-</sup></small>) and phthalocyaninato (Pc<small><sup>2-</sup></small>) square planar transition metal complexes (MTPP and MPc; M = V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) has been revisited through DFT calculations. The different symmetry and spin multiplicity between MPc and MTPP of the same M is shown to originate from the different Pc<small><sup>2-</sup></small> and TPP<small><sup>2-</sup></small> ligand field, stronger in the former ligand than in the latter. The corresponding spatial localization and symmetry of the unoccupied molecular orbitals postulate unescapable geometric constraints to their overlap with the electron cloud of a crystalline metal surface. From comparison with literature experimental evidence, we show that the adsorption geometry (atomic site and azimuthal orientation) of MTPPs and MPcs on the low index crystal planes of coinage metals (CM = Au, Ag, Cu) may be predicted when two conditions are satisfied: i) evidence of a surface → adsorbate charge transfer, ii) absence of significant distortion of the macrocycle upon adsorption. In this regard, the overall susceptibility to charge transfer is determined by the strength of the molecular ligand field (i.e., charge transfer to MPc is more favoured than to MTPP) and inversely linked to the electronegativity of the surface atoms (being Au the most inert CM substrate thanks to its highest electronegativity).","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"77 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp01576f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The frontier electronic structure of tetraphenylporphyrinato (TPP2-) and phthalocyaninato (Pc2-) square planar transition metal complexes (MTPP and MPc; M = V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) has been revisited through DFT calculations. The different symmetry and spin multiplicity between MPc and MTPP of the same M is shown to originate from the different Pc2- and TPP2- ligand field, stronger in the former ligand than in the latter. The corresponding spatial localization and symmetry of the unoccupied molecular orbitals postulate unescapable geometric constraints to their overlap with the electron cloud of a crystalline metal surface. From comparison with literature experimental evidence, we show that the adsorption geometry (atomic site and azimuthal orientation) of MTPPs and MPcs on the low index crystal planes of coinage metals (CM = Au, Ag, Cu) may be predicted when two conditions are satisfied: i) evidence of a surface → adsorbate charge transfer, ii) absence of significant distortion of the macrocycle upon adsorption. In this regard, the overall susceptibility to charge transfer is determined by the strength of the molecular ligand field (i.e., charge transfer to MPc is more favoured than to MTPP) and inversely linked to the electronegativity of the surface atoms (being Au the most inert CM substrate thanks to its highest electronegativity).
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.