Xiangyu Zhang;Yu Zhou;Guang Yang;Harald C. Gall;Taolue Chen
{"title":"Anchor Attention, Small Cache: Code Generation With Large Language Models","authors":"Xiangyu Zhang;Yu Zhou;Guang Yang;Harald C. Gall;Taolue Chen","doi":"10.1109/TSE.2025.3570680","DOIUrl":null,"url":null,"abstract":"The development of large language models (LLMs) has revolutionized automated code generation. However, their high demand of computation resources has hindered a broader deployment and raised environmental concerns. A common strategy for diminishing computational demands is to cache Key-Value (KV) states from the attention mechanism which is adopted predominately by mainstream LLMs. It can mitigate the need of repeated attention computations, but brings significant memory overhead. Current practices in NLP often use sparse attention which may, unfortunately, lead to substantial inaccuracies, or hallucinations, in code generation tasks. In this paper, we analyze the attention weights distribution within code generation models via an empirical study, uncovering a sparsity pattern, i.e., the aggregation of information at specific anchor points. Based on this observation, we propose a novel approach, <monospace>AnchorCoder</monospace>, which features token-wise anchor attention designed to extract and compress the contextual information, and layer-wise anchor attention enabling cross-layer communication to mitigate the issue of excessive superposition caused by the compression. The extensive experiments across multiple benchmark datasets confirm the effectiveness of <monospace>AnchorCoder</monospace>, which can consistently achieve a significant (at least 70%) reduction in KV cache requirements, while preserving the majority of model’s performance.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"51 6","pages":"1866-1881"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11005718/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The development of large language models (LLMs) has revolutionized automated code generation. However, their high demand of computation resources has hindered a broader deployment and raised environmental concerns. A common strategy for diminishing computational demands is to cache Key-Value (KV) states from the attention mechanism which is adopted predominately by mainstream LLMs. It can mitigate the need of repeated attention computations, but brings significant memory overhead. Current practices in NLP often use sparse attention which may, unfortunately, lead to substantial inaccuracies, or hallucinations, in code generation tasks. In this paper, we analyze the attention weights distribution within code generation models via an empirical study, uncovering a sparsity pattern, i.e., the aggregation of information at specific anchor points. Based on this observation, we propose a novel approach, AnchorCoder, which features token-wise anchor attention designed to extract and compress the contextual information, and layer-wise anchor attention enabling cross-layer communication to mitigate the issue of excessive superposition caused by the compression. The extensive experiments across multiple benchmark datasets confirm the effectiveness of AnchorCoder, which can consistently achieve a significant (at least 70%) reduction in KV cache requirements, while preserving the majority of model’s performance.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.