iDDN: determining trans-omics network structure and rewiring with integrative differential dependency networks.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-05-08 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf086
Yizhi Wang, Yi Fu, Yingzhou Lu, Zhen Zhang, Robert Clarke, Sarah J Parker, David M Herrington, Guoqiang Yu, Yue Wang
{"title":"iDDN: determining trans-omics network structure and rewiring with integrative differential dependency networks.","authors":"Yizhi Wang, Yi Fu, Yingzhou Lu, Zhen Zhang, Robert Clarke, Sarah J Parker, David M Herrington, Guoqiang Yu, Yue Wang","doi":"10.1093/bioadv/vbaf086","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Mapping the gene networks that drive disease progression allows identifying molecules that rectify the network by normalizing pivotal regulatory elements. Upon mechanistic validation, these upstream normalizers represent attractive targets for developing therapeutic interventions to prevent the initiation or interrupt the pathways of disease progression. Differential network analysis aims to detect significant rewiring of regulatory network structures under different conditions. With few exceptions, most existing tools are limited to inferring differential networks from single-omics data that could be incomplete and prone to collapse when trans-omics multifactorial regulatory mechanisms are involved.</p><p><strong>Results: </strong>We previously developed an efficient differential network analysis method-Differential Dependency Networks (DDN), that enables joint learning of common network structure and rewiring under different conditions. We now introduce the integrative DDN (iDDN) tool that extends this framework with biologically principled designs to make robust multi-omics differential network inferences. The comparative experimental evaluations on both realistic simulations and case studies show that iDDN can help biologists more accurately identify, in a study-specific and often unknown trans-omics regulatory circuitry, a network of differentially wired molecules potentially responsible for phenotypic transitions.</p><p><strong>Availability and implementation: </strong>The Python package of iDDN is available at https://github.com/cbil-vt/iDDN. A user's guide is provided at https://iddn.readthedocs.io/.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf086"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070392/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Mapping the gene networks that drive disease progression allows identifying molecules that rectify the network by normalizing pivotal regulatory elements. Upon mechanistic validation, these upstream normalizers represent attractive targets for developing therapeutic interventions to prevent the initiation or interrupt the pathways of disease progression. Differential network analysis aims to detect significant rewiring of regulatory network structures under different conditions. With few exceptions, most existing tools are limited to inferring differential networks from single-omics data that could be incomplete and prone to collapse when trans-omics multifactorial regulatory mechanisms are involved.

Results: We previously developed an efficient differential network analysis method-Differential Dependency Networks (DDN), that enables joint learning of common network structure and rewiring under different conditions. We now introduce the integrative DDN (iDDN) tool that extends this framework with biologically principled designs to make robust multi-omics differential network inferences. The comparative experimental evaluations on both realistic simulations and case studies show that iDDN can help biologists more accurately identify, in a study-specific and often unknown trans-omics regulatory circuitry, a network of differentially wired molecules potentially responsible for phenotypic transitions.

Availability and implementation: The Python package of iDDN is available at https://github.com/cbil-vt/iDDN. A user's guide is provided at https://iddn.readthedocs.io/.

iDDN:决定跨组学网络结构和整合差异依赖网络的重新布线。
动机:绘制驱动疾病进展的基因网络允许识别通过使关键调控元件正常化来纠正网络的分子。经过机制验证,这些上游正常化因子代表了开发治疗干预措施以防止启动或中断疾病进展途径的有吸引力的目标。差分网络分析旨在检测不同条件下调控网络结构的显著重布线。除了少数例外,大多数现有工具仅限于从单组学数据推断差异网络,当涉及跨组学多因子调节机制时,这些数据可能不完整且容易崩溃。结果:我们之前开发了一种高效的差分网络分析方法-差分依赖网络(DDN),可以联合学习共同的网络结构和不同条件下的重新布线。我们现在介绍了集成DDN (iDDN)工具,该工具通过生物学原理设计扩展了该框架,以实现稳健的多组学差异网络推断。对现实模拟和案例研究的比较实验评估表明,iDDN可以帮助生物学家更准确地识别研究特异性和通常未知的反组学调控电路,一个可能负责表型转变的差异连接分子网络。可用性和实现:iDDN的Python包可从https://github.com/cbil-vt/iDDN获得。用户指南可在https://iddn.readthedocs.io/上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信